

## Quaderni di Dipartimento

## Atomic Intersection of $\boldsymbol{\sigma}$-Fields and Some of Its Consequences

Patrizia Berti<br>(Università di Modena e Reggio Emilia)<br>Luca Pratelli<br>(Accademia Navale di Livorno)<br>Pietro Rigo<br>(Università di Pavia)

\# 96 (05-09)

Dipartimento di economia politica
e metodi quantitativi
Università degli studi di Pavia
Via San Felice, 5
I-27100 Pavia
Maggio 2009

# ATOMIC INTERSECTION OF $\sigma$-FIELDS AND SOME OF ITS CONSEQUENCES 

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO


#### Abstract

Let $(\Omega, \mathcal{F}, P)$ be a probability space. For each $\mathcal{G} \subset \mathcal{F}$, define $\overline{\mathcal{G}}$ as the $\sigma$-field generated by $\mathcal{G}$ and those sets $F \in \mathcal{F}$ satisfying $P(F) \in\{0,1\}$. Conditions for $P$ to be atomic on $\cap_{i=1}^{k} \overline{\mathcal{A}_{i}}$, with $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k} \subset \mathcal{F}$ sub- $\sigma$-fields, are given. Conditions for $P$ to be $0-1$-valued on $\cap_{i=1}^{k} \overline{\mathcal{A}_{i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.


## 1. Introduction

Throughout, $(\Omega, \mathcal{F}, P)$ is a probability space, $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k} \subset \mathcal{F}$ sub- $\sigma$-fields, $k \geq 2$, and we let

$$
\mathcal{N}=\{F \in \mathcal{F}: P(F) \in\{0,1\}\} \text { and } \overline{\mathcal{G}}=\sigma(\mathcal{G} \cup \mathcal{N}) \text { for any } \mathcal{G} \subset \mathcal{F}
$$

As discussed in Section 3, the sub- $\sigma$-field

$$
\mathcal{D}=\cap_{i=1}^{k} \overline{\mathcal{A}_{i}}
$$

plays a role in various subjects, including Gibbs sampling, iterated conditional expectations and the intersection property. In a previous paper, in a Gibbs sampling framework, we investigated when $\cap_{i=1}^{k} \overline{\mathcal{A}_{i}}=\overline{\cap_{i=1}^{k} \mathcal{A}_{i}}$; see [3].

In this paper, instead, we focus on atomicity of $P$ on $\mathcal{D}$. In fact, atomicity of $P \mid \mathcal{D}$ (i.e., the restriction of $P$ to $\mathcal{D}$ ) has implications in each of the subjects mentioned above. It turns out that $P \mid \mathcal{D}$ is actually atomic under mild conditions.

An extreme form of atomicity for $P \mid \mathcal{D}$ is $\mathcal{D}=\mathcal{N}$, that is, $P 0-1$-valued on $\mathcal{D}$. Indeed, $\mathcal{D}=\mathcal{N}$ is fundamental for Gibbs sampling and very useful for the intersection property; see [3], [7] and [10].

Our main results are in Sections 4 and 5. Section 4 gives general results on atomicity of $P \mid \mathcal{D}$. It includes a characterization (Theorem 2), a criterion for identifying the atoms (Theorem 3) and a sufficient condition (Theorem 4). Section 5, motivated by Gibbs sampling applications, concerns the particular case

$$
\mathcal{A}_{i}=\sigma\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}\right)
$$

where $X_{1}, \ldots, X_{k}$ are any random variables on $(\Omega, \mathcal{F}, P)$. It contains working sufficient conditions for $\mathcal{D}=\mathcal{N}$ (Theorem 8) and for $P \mid \mathcal{D}$ to be atomic (Theorem 10). Indeed, $P \mid \mathcal{D}$ is atomic whenever the probability distribution of $\left(X_{1}, \ldots, X_{k}\right)$ is absolutely continuous with respect to a $\sigma$-finite product measure.

[^0]Finally, it is worth noting that $\mathcal{D}=\mathcal{N}$ whenever $\mathcal{A}_{r}$ is independent of $\mathcal{A}_{s}$ for some $r, s$. Given $D \in \mathcal{D}$, in fact, one has $P\left(A_{i} \Delta D\right)=0$ for some $A_{i} \in \mathcal{A}_{i}, i=1, \ldots, k$. Hence, $P(D)=P\left(A_{r} \cap A_{s}\right)=P\left(A_{r}\right) P\left(A_{s}\right)=P(D)^{2}$.

## 2. Preliminaries

Let $(\mathcal{X}, \mathcal{E}, Q)$ be a probability space. A $Q$-atom is any set $H \in \mathcal{E}$ such that $Q(H)>0$ and $Q(\cdot \mid H)$ is 0-1-valued. In general, there are three possible situations: (i) $Q$ is nonatomic, i.e., there are no $Q$-atoms; (ii) $Q$ is atomic, i.e., the $Q$-atoms form a (countable) partition of $\mathcal{X}$; (iii) there is $K \in \mathcal{E}, 0<Q(K)<1$, such that $Q(\cdot \mid K)$ is nonatomic and $K^{c}$ is a (countable) disjoint union of $Q$-atoms.

Thus, $D \subset \Omega$ is an atom of $P \mid \mathcal{D}$ if and only if $D \in \mathcal{D}, P(D)>0$ and $P(\cdot \mid D)$ is $0-1$-valued on $\mathcal{D}$. In the sequel, when $P \mid \mathcal{D}$ is atomic, we also say that $\mathcal{D}$ is atomic under $P$.

For later purposes, we also note that $Q$ is nonatomic if and only if $(\mathcal{X}, \mathcal{E}, Q)$ supports a real random variable with uniform distribution on $(0,1)$. In fact, if $U$ is a uniform random variable on $(\mathcal{X}, \mathcal{E}, Q)$, then $Q$ is nonatomic since $\sigma(U) \subset \mathcal{E}$ and $Q \mid \sigma(U)$ is nonatomic. Conversely, by Lyapunov's convexity theorem, if $Q$ is nonatomic the range of $Q$ is $[0,1]$; see e.g. [8] or Theorem 5.1.6 of [4] for a proof (based on transfinite induction or Zorn's lemma, respectively). Since the range of $Q$ is [0,1], a uniform random variable on $(\mathcal{X}, \mathcal{E}, Q)$ can be obtained by arguing as in the proof of Lemma 2 of [1]; see also Theorem 3.1 of [2].

We finally recall that, for any sub- $\sigma$-field $\mathcal{G} \subset \mathcal{F}$,

$$
\overline{\mathcal{G}}=\{F \in \mathcal{F}: P(F \Delta G)=0 \text { for some } G \in \mathcal{G}\}
$$

A straightforward consequence is that a real $\overline{\mathcal{G}}$-measurable function on $\Omega$ coincides a.s. with some $\mathcal{G}$-measurable function. Thus, if $U: \Omega \rightarrow \mathbb{R}$ is $\mathcal{D}$-measurable, then $U=U_{i}$ a.s. for some $\mathcal{A}_{i}$-measurable function $U_{i}: \Omega \rightarrow \mathbb{R}, i=1, \ldots, k$.

## 3. Fields where $\mathcal{D}$ appears

We list some fields involving $\mathcal{D}$, by paying particular attention to the case where $P \mid \mathcal{D}$ is atomic. We stress by now that, for atomicity of $P \mid \mathcal{D}$ to be a real advantage, the atoms of $P \mid \mathcal{D}$ and their probabilities should be known.

Throughout, $X_{i}$ is a random variable on $(\Omega, \mathcal{F}, P)$ with values in the measurable space $\left(\mathcal{X}_{i}, \mathcal{B}_{i}\right), i=1, \ldots, k$, and

$$
X_{i}^{*}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}\right)
$$

3.1. Intersection property. Let $X$ be a random variable on $(\Omega, \mathcal{F}, P)$ with values in the measurable space $(\mathcal{X}, \mathcal{E})$. The intersection property (IP) is

$$
X \perp X_{i}^{*} \mid X_{i} \text { for } i=1, \ldots, k \quad \Longrightarrow \quad X \perp\left(X_{1}, \ldots, X_{k}\right)
$$

where the notation " $U \perp V \mid W$ " stands for " $U$ conditionally independent of $V$ given $W$ ". It is well known that IP may fail. As a trivial example, take $X$ not independent of $X_{1}$ and $X_{i}=X_{1}$ for all $i$.

IP is involved in a number of arguments. It appears, for instance, in graphical models, zero entries in contingency tables, causal inference and estimation in Markov processes; see [10] and references therein.

The connections between IP and $\mathcal{D}$ are made clear by part (b) of the next (obvious) result. Part (a) is already known for $k=2$ (see Proposition 2.2 of [10] and references therein) but we give a proof to make the paper self-contained.

Theorem 1. Let $\mathcal{A}_{i}=\sigma\left(X_{i}\right)$ for all $i$. Then:
(a) $X \perp X_{i}^{*} \mid X_{i}$ for $i=1, \ldots, k \Longleftrightarrow E\left(f(X) \mid X_{1}, \ldots, X_{k}\right)=E(f(X) \mid \mathcal{D})$ a.s. for each real bounded measurable function $f$ on $(\mathcal{X}, \mathcal{E})$;
(b) $X \perp X_{i}^{*} \mid X_{i}$ for $i=1, \ldots, k$ and $X \perp \mathcal{D} \Longleftrightarrow X \perp\left(X_{1}, \ldots, X_{k}\right)$;
(c) $X \perp \mathcal{D}$ if and only if

$$
P\left(X \in A, X_{1} \in B_{1}\right)=P(X \in A) P\left(X_{1} \in B_{1}\right) \quad \text { whenever }
$$

$A \in \mathcal{E}, B_{1} \in \mathcal{B}_{1}$ and $P\left(\left\{X_{1} \in B_{1}\right\} \Delta\left\{X_{i} \in B_{i}\right\}\right)=0$ for some $B_{i} \in \mathcal{B}_{i}, i=2, \ldots, k$.
Proof. (a) Suppose $E\left(f(X) \mid X_{1}, \ldots, X_{k}\right)=E(f(X) \mid \mathcal{D})$ a.s. for all bounded measurable $f$ on $(\mathcal{X}, \mathcal{E})$. Given $i$, since $\mathcal{D} \subset \overline{\sigma\left(X_{i}\right)} \subset \overline{\sigma\left(X_{1}, \ldots, X_{k}\right)}$, then

$$
E\left(f(X) \mid X_{i}\right)=E(f(X) \mid \mathcal{D})=E\left(f(X) \mid X_{1}, \ldots, X_{k}\right) \text { a.s. }
$$

for all bounded measurable $f$, that is, $X \perp X_{i}^{*} \mid X_{i}$. Conversely, suppose $X \perp X_{i}^{*} \mid X_{i}$ for all $i$. Given a bounded measurable $f$,

$$
E\left(f(X) \mid X_{1}\right)=E\left(f(X) \mid X_{1}, \ldots, X_{k}\right)=E\left(f(X) \mid X_{i}\right) \quad \text { a.s. for all } i .
$$

Thus, $E\left(f(X) \mid X_{1}\right)$ is $\overline{\sigma\left(X_{i}\right)}$-measurable for all $i$, i.e., it is $\mathcal{D}$-measurable. Therefore, $E\left(f(X) \mid X_{1}, \ldots, X_{k}\right)=E\left(f(X) \mid X_{1}\right)=E(f(X) \mid \mathcal{D})$ a.s..
(b) " $\Longleftarrow "$ is obvious. As to " $\Longrightarrow "$, it suffices noting that $E\left(f(X) \mid X_{1}, \ldots, X_{k}\right)=$ $E(f(X) \mid \mathcal{D})=E f(X)$ a.s. for all bounded measurable $f$, where the first equality is by part (a) and the second is because $X \perp \mathcal{D}$.
(c) Just note that

$$
\mathcal{D}=\left\{F \in \mathcal{F}: P\left(F \Delta\left\{X_{i} \in B_{i}\right\}\right)=0 \text { for some } B_{i} \in \mathcal{B}_{i}, i=1, \ldots, k\right\} .
$$

Thus, $X \perp \mathcal{D}$ is a (natural) sufficient condition for IP. In a sense, it is necessary as well, since it is a consequence of $X \perp\left(X_{1}, \ldots, X_{k}\right)$. Heuristically, $X \perp \mathcal{D}$ means that $X$ is not affected by that part of information which is common to $X_{1}, \ldots, X_{k}$.

To test whether $X \perp \mathcal{D}$, atomicity of $\mathcal{D}$ under $P$ can help. If $P \mid \mathcal{D}$ is atomic, in fact, $X \perp \mathcal{D}$ reduces to

$$
P(X \in A, D)=P(X \in A) P(D) \quad \text { for all } A \in \mathcal{E} \text { and atoms } D \text { of } P \mid \mathcal{D}
$$

As shown in Theorem 4, for $P \mid \mathcal{D}$ to be atomic, it is enough that the distribution of $\left(X_{1}, \ldots, X_{k}\right)$ is absolutely continuous with respect to a $\sigma$-finite product measure; see also Lemma 6.

A last note is that $X \perp \mathcal{D}$ is trivially true whenever $\mathcal{D}=\mathcal{N} . \operatorname{In}$ [10], a paper which inspired the present Subsection, $\mathcal{D}=\mathcal{N}$ was firstly viewed as a sufficient condition for IP. In [3], in a Gibbs sampling framework, $\mathcal{D}=\mathcal{N}$ was given a characterization and various sufficient conditions.
3.2. Iterated conditional expectations. Let $X$ be a real random variable on $(\Omega, \mathcal{F}, P)$ such that $E X^{2}<\infty$ and

$$
\mathcal{D}_{m k+i}=\mathcal{A}_{i} \quad \text { for all } m=0,1, \ldots \text { and } i=1, \ldots, k
$$

Define $Z_{0}=X$ and $Z_{n}=E\left(Z_{n-1} \mid \mathcal{D}_{n}\right)$ for $n \geq 1$. Then,

$$
\begin{equation*}
Z_{n} \xrightarrow{\text { a.s. }} E(X \mid \mathcal{D}) \quad \text { as } n \rightarrow \infty . \tag{1}
\end{equation*}
$$

This classical result was obtained by Burkholder-Chow [5] for $k=2$ and DelyonDelyon [6] for arbitrary $k$. See [7] for some historical notes.

Suppose now that $\mathcal{D}$ is atomic under $P$ and the goal is estimating $E X$. Then, $E(X \mid \mathcal{D})=\sum_{j} I_{D_{j}} E\left(X \mid D_{j}\right)$ a.s. where $D_{1}, D_{2}, \ldots$ denote the (disjoint) atoms of $P \mid \mathcal{D}$. Thus, one should apply relation (1) on each atom $D_{j}$, so as to obtain an estimate for $E\left(X \mid D_{j}\right)$, and then use the formula $E X=\sum_{j} P\left(D_{j}\right) E\left(X \mid D_{j}\right)$.
3.3. Gibbs sampling. As noted in [7], the limit theorem of Burkholder-Chow and Delyon-Delyon (Subsection 3.2) is intrinsically connected to Gibbs sampling.

Let $X_{1}, \ldots, X_{k}$ be the canonical projections on

$$
(\Omega, \mathcal{F})=\left(\prod_{i=1}^{k} \mathcal{X}_{i}, \prod_{i=1}^{k} \mathcal{B}_{i}\right)
$$

Each $X_{i}$ is assumed to admit a regular conditional distribution $\gamma_{i}$ given $X_{i}^{*}$. In the notation $u=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$, where $x_{j} \in \mathcal{X}_{j}$ for all $j \neq i$, this means that: (i) $\gamma_{i}(u)$ is a probability measure on $\mathcal{B}_{i}$ for every $u$; (ii) $u \mapsto \gamma_{i}(u)(A)$ is measurable for $A \in \mathcal{B}_{i}$; (iii) $P(B)=\iint I_{B}\left(x_{1}, \ldots, x_{k}\right) \gamma_{i}(u)\left(d x_{i}\right) \gamma_{i}^{*}(d u)$ for $B \in \prod_{i=1}^{k} \mathcal{B}_{i}$, where $\gamma_{i}^{*}$ denotes the marginal distribution of $X_{i}^{*}$.

The Gibbs-chain

$$
Y_{n}=\left(Y_{1, n}, \ldots, Y_{k, n}\right), \quad n \geq 0
$$

can be informally described as follows. Starting from $\omega=\left(x_{1}, \ldots, x_{k}\right)$, the next state $\omega^{*}=\left(a_{1}, \ldots, a_{k}\right)$ is obtained by sequentially generating $a_{k}, a_{k-1}, \ldots, a_{1}$, each $a_{i}$ being selected from the conditional distribution of $X_{i}$ given $X_{1}=x_{1}, \ldots, X_{i-1}=$ $x_{i-1}, X_{i+1}=a_{i+1}, \ldots, X_{k}=a_{k}$. Formally, $\left(Y_{n}\right)$ is the homogeneous Markov chain with state space $(\Omega, \mathcal{F})$ and transition kernel

$$
\begin{gathered}
K(\omega, B)=K\left(\left(x_{1}, \ldots, x_{k}\right), B\right) \\
=\int \ldots \int I_{B}\left(a_{1}, \ldots, a_{k}\right) \prod_{i=1}^{k} \gamma_{i}\left(x_{1}, \ldots, x_{i-1}, a_{i+1}, \ldots, a_{k}\right)\left(d a_{i}\right) .
\end{gathered}
$$

Note that $P$ is a stationary distribution for $\left(Y_{n}\right)$, i.e., $P(\cdot)=\int K(\omega, \cdot) P(d \omega)$. Let $\mathbb{P}$ denote the law of $\left(Y_{n}\right)$ such that $Y_{0} \sim P$.

The Gibbs chain is constructed mainly for sampling from $P$. To this end, the following SLLN is fundamental

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-1} \phi\left(Y_{i}\right) \rightarrow \int \phi d P, \mathbb{P} \text {-a.s., for all } \phi \in L_{1}(P) \tag{2}
\end{equation*}
$$

Another basic requirement of $\left(Y_{n}\right)$, stronger than (2), is ergodicity on some set $S \in \mathcal{F}$, that is

$$
P(S)=1, \quad K(\omega, S)=1 \quad \text { and } \quad\left\|K^{n}(\omega, \cdot)-P\right\| \rightarrow 0 \text { for each } \omega \in S
$$

where $\|\cdot\|$ is total variation norm and $K^{n}$ the $n$-th iterate of $K$.
Now, letting $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i$, the SLLN under (2) is equivalent to

$$
\mathcal{D}=\mathcal{N} .
$$

In addition, in case $\mathcal{F}$ is countably generated and $P$ absolutely continuous with respect to a $\sigma$-finite product measure, $\mathcal{D}=\mathcal{N}$ if and only if $\left(Y_{n}\right)$ is ergodic on $S_{0}=\{\omega \in \Omega: K(\omega, \cdot) \ll P\}$. See Theorems 4.2, 4.5 and Remark 4.7 of [3].

Conditions for $\mathcal{D}=\mathcal{N}\left(\right.$ when $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i$ ) are given in Theorem 8; see also Lemma 6.

Strictly speaking, thus, Gibbs sampling is admissible only if $\mathcal{D}=\mathcal{N}$. At least in principle, however, it makes sense even if $\mathcal{D} \neq \mathcal{N}$, provided $\mathcal{D}$ is atomic under $P$. In fact, if $P \mid \mathcal{D}$ is atomic (with disjoint atoms $D_{1}, D_{2}, \ldots$ ), then (2) turns into

$$
\begin{gather*}
\frac{1}{n} \sum_{i=0}^{n-1} \phi\left(Y_{i}\right) \rightarrow \int \phi(\omega) P\left(d \omega \mid D_{j}\right)  \tag{*}\\
\mathbb{P} \text {-a.s. on }\left\{Y_{0} \in D_{j}\right\}, \text { for all } j \text { and } \phi \in L_{1}(P)
\end{gather*}
$$

The SLLN under $\left(2^{*}\right)$ can be proved by the same argument used for Theorem 4.2 of [3] plus the observation that $K(\cdot, B)=I_{B}(\cdot), P$-a.s., for each $B \in \mathcal{D}$.

If the atoms $D_{j}$ are only a finite number, and they are known together with their probabilities $P\left(D_{j}\right)$, then $\left(2^{*}\right)$ can be used to evaluate $\int \phi d P$. The chain $\left(Y_{n}\right)$ should be started on each $D_{j}$, so as to obtain an estimate for $\int \phi(\omega) P\left(d \omega \mid D_{j}\right)$, and then the formula $\int \phi d P=\sum_{j} P\left(D_{j}\right) \int \phi(\omega) P\left(d \omega \mid D_{j}\right)$ should be applied.

As shown in Theorem 10, for $P \mid \mathcal{D}$ to be atomic, it is enough that the distribution of $\left(X_{1}, \ldots, X_{k}\right)$ is absolutely continuous with respect to a $\sigma$-finite product measure.

## 4. Atomicity of $\mathcal{D}$ under $P$

We begin with a definition. Say that $H \subset \Omega$ has the trivial intersection property, or briefly that $H$ is TIP, in case $H \in \mathcal{F}, P(H)>0$, and

$$
A_{i} \in \mathcal{A}_{i} \text { and } P\left(A_{i} \Delta A_{1} \mid H\right)=0 \text { for } i=1, \ldots, k \Longrightarrow P\left(A_{1} \mid H\right) \in\{0,1\}
$$

Here are some obvious consequences of the definition.
(i) If $H$ is TIP, $A_{i} \in \mathcal{A}_{i}$ and $P\left(A_{i} \Delta A_{1} \mid H\right)=0$ for all $i$, then either $P\left(A_{i} \mid H\right)=0$ for all $i$ or $P\left(A_{i} \mid H\right)=1$ for all $i$.
(ii) Let $H \in \mathcal{F}$ with $P(H)>0$ and write $P_{H}=P(\cdot \mid H)$. Then, $H$ is TIP if and only if $\Omega$ is $P_{H}$-TIP (i.e., $\Omega$ is TIP under $P_{H}$ ). Moreover, $\Omega$ is TIP if and only if $\mathcal{D}=\mathcal{N}$. Therefore, the definition of TIP set may be rephrased as follows: $H$ is TIP if and only if

$$
\mathcal{D}_{P_{H}}=\mathcal{N}_{P_{H}}
$$

where $\mathcal{N}_{P_{H}}=\left\{F \in \mathcal{F}: P_{H}(F) \in\{0,1\}\right\}$ and $\mathcal{D}_{P_{H}}=\cap_{i=1}^{k} \sigma\left(\mathcal{A}_{i} \cup \mathcal{N}_{P_{H}}\right)$.
(iii) Let $Q$ be a probability on $\mathcal{F}$. If $P$ and $Q$ are equivalent (i.e., $P \ll Q$ and $Q \ll P)$, then $H$ is $Q$-TIP if and only if it is $P$-TIP. If $P \ll Q$ and $H \subset\left\{\frac{d P}{d Q}>0\right\}$, for some given version of $\frac{d P}{d Q}$, then $H$ is $Q$-TIP if and only if it is $P$-TIP.

The present notion of TIP set generalizes the one given in [3] for $k=2$. Among other things, such a notion is basic for characterizing atomicity of $P \mid \mathcal{D}$.

Theorem 2. Let $H \subset \Omega$. Then,
(a) If $H$ is TIP, there is an atom $H^{*}$ of $P \mid \mathcal{D}$ satisfying $H^{*} \supset H$ and $P\left(D \mid H^{*}\right)=P(D \mid H)$ for all $D \in \mathcal{D}$;
(b) For $H$ to be an atom of $P \mid \mathcal{D}$ it is necessary and sufficient that $H \in \mathcal{D}$ and $H$ is TIP;
(c) $\mathcal{D}$ is atomic under $P$ if and only if $P\left(\cup_{n} H_{n}\right)=1$ for some countable collection $H_{1}, H_{2}, \ldots$ of TIP sets.

Proof. (a) Suppose $H$ is TIP. We first prove that $P(\cdot \mid H)$ is $0-1$ on $\mathcal{D}$. Given $D \in \mathcal{D}$, for each $i$ there is $A_{i} \in \mathcal{A}_{i}$ such that $P\left(A_{i} \Delta D\right)=0$. Hence, $P\left(\left(A_{i} \Delta A_{1}\right) \cap H\right) \leq$ $P\left(A_{i} \Delta A_{1}\right)=0$ for all $i$, and $H$ TIP implies $P(D \mid H)=P\left(A_{1} \mid H\right) \in\{0,1\}$. Next, by a standard argument, there is $H^{*} \in \mathcal{D}$ such that $H^{*} \supset H$ and

$$
P\left(H^{*}\right)=\inf \{P(D): H \subset D \in \mathcal{D}\} .
$$

Let $D \in \mathcal{D}$. If $P(D \mid H)=1$, then

$$
H \subset\left(D \cap H^{*}\right) \cup\left(D^{c} \cap H\right) \in \mathcal{D}
$$

so that $P\left(H^{*}\right) \leq P\left(\left(D \cap H^{*}\right) \cup\left(D^{c} \cap H\right)\right)=P\left(D \cap H^{*}\right)$ by definition of $H^{*}$. Hence, $P\left(D \mid H^{*}\right)=1$. Taking complements, if $P(D \mid H)=0$ then $P\left(D \mid H^{*}\right)=0$. Thus, $H^{*}$ is an atom of $P \mid \mathcal{D}$ and $P\left(\cdot \mid H^{*}\right)=P(\cdot \mid H)$ on $\mathcal{D}$.
(b) If $H \in \mathcal{D}$ is TIP, then $H$ is an atom of $P \mid \mathcal{D}$ since $P\left(H \mid H^{*}\right)=P(H \mid H)=1$, where $H^{*}$ is as in point (a). Conversely, suppose $H$ is an atom of $P \mid \mathcal{D}$. To prove $H$ TIP, we fix $A_{i} \in \mathcal{A}_{i}$ such that $P\left(A_{i} \Delta A_{1} \mid H\right)=0$ for $i=1, \ldots, k$. For each $i$, since $H \in \mathcal{D} \subset \overline{\mathcal{A}_{i}}$, some $H_{i} \in \mathcal{A}_{i}$ meets $P\left(H \Delta H_{i}\right)=0$. Moreover,

$$
P\left(\left(A_{1} \cap H\right) \Delta\left(A_{i} \cap H_{i}\right)\right) \leq P\left(H \Delta H_{i}\right)+P\left(\left(A_{i} \Delta A_{1}\right) \cap H\right)=0
$$

Hence, $A_{1} \cap H \in \overline{\mathcal{A}_{i}}$ for all $i$, that is, $A_{1} \cap H \in \mathcal{D}$. Since $H$ is an atom of $P \mid \mathcal{D}$, it follows that $P\left(A_{1} \mid H\right)=P\left(A_{1} \cap H \mid H\right) \in\{0,1\}$. Thus, $H$ is TIP.
(c) If $P \mid \mathcal{D}$ is atomic, it suffices to take the $H_{n}$ as the atoms of $P \mid \mathcal{D}$ and to apply point (b). Conversely, if $P\left(\cup_{n} H_{n}\right)=1$ with the $H_{n}$ TIP, for each $n$ point (a) implies $H_{n} \subset H_{n}^{*}$ for some atom $H_{n}^{*}$ of $P \mid \mathcal{D}$. Then, $P \mid \mathcal{D}$ is atomic since $P\left(\cup_{n} H_{n}^{*}\right) \geq P\left(\cup_{n} H_{n}\right)=1$.

By Theorem $2, P \mid \mathcal{D}$ is atomic provided $\Omega$ can be covered by countably many TIP sets $H_{1}, H_{2}, \ldots$. In this case, every atom $D$ admits the representation $D=\cup_{i \in I} H_{i}$ a.s. for some index set $I$ (by point (a)). The next issue, thus, is identifying such atoms using the $H_{n}$ as building blocks. Indeed, the atoms are maximal TIP sets, according to the following result.
Theorem 3. Suppose $P\left(\cup_{n} H_{n}\right)=1$, where $H_{1}, H_{2}, \ldots$ are TIP, and let $D \subset \Omega$. Then, $D$ is an atom of $P \mid \mathcal{D}$ if and only if $D$ is TIP and

$$
\begin{equation*}
D \cup H_{n} \text { fails to be TIP whenever } P\left(H_{n} \backslash D\right)>0 \tag{3}
\end{equation*}
$$

Proof. By Theorem 2, it can be assumed $D$ TIP, and we have to prove that condition (3) is equivalent to $D \in \mathcal{D}$. Suppose (3) holds. Let $N=\left\{n: P\left(H_{n} \backslash D\right)>0\right\}$. If $N=\emptyset$, then $P\left(D^{c}\right) \leq \sum_{n} P\left(H_{n} \backslash D\right)=0$, so that $D \in \mathcal{N} \subset \mathcal{D}$. If $N \neq \emptyset$, by (3), for each $n \in N$ there are $A_{i, n} \in \mathcal{A}_{i}, i=1, \ldots, k$, satisfying

$$
P\left(A_{i, n} \Delta A_{1, n} \mid D \cup H_{n}\right)=0 \text { and } P\left(A_{i, n} \mid D \cup H_{n}\right) \in(0,1) \text { for all } i
$$

Since $D$ and $H_{n}$ are TIP, one also has $P\left(A_{i, n} \mid D\right) \in\{0,1\}$ and $P\left(A_{i, n} \mid H_{n}\right) \in$ $\{0,1\}$ for all $i$, and thus

$$
P\left(A_{i, n} \mid D\right)=1-P\left(A_{i, n} \mid H_{n}\right) \text { for all } i
$$

Define $F_{i, n}=A_{i, n}$ or $F_{i, n}=A_{i, n}^{c}$ as $P\left(A_{i, n} \mid D\right)=1$ or $P\left(A_{i, n} \mid D\right)=0$, and

$$
A_{i}=\cap_{n \in N} F_{i, n}
$$

Then, $P\left(A_{i} \mid D\right)=1$ and $P\left(A_{i} \mid H_{n}\right)=0$ for all $i$ and $n \in N$. Hence, given $i$,

$$
P\left(A_{i} \Delta D\right)=P\left(A_{i} \backslash D\right) \leq \sum_{n \in N} P\left(A_{i} \cap D^{c} \cap H_{n}\right) \leq \sum_{n \in N} P\left(A_{i} \cap H_{n}\right)=0
$$

Since $A_{i} \in \mathcal{A}_{i}$, it follows that $D \in \overline{\mathcal{A}_{i}}$, that is, $D \in \mathcal{D}$. Conversely, suppose $D \in \mathcal{D}$ and $D \cup H_{n}$ is TIP for some $n$. Since $P\left(D \mid D \cup H_{n}\right) \in\{0,1\}$ (by point (a) of Theorem 2) and $P(D)>0$ (as $D$ is TIP), then $P\left(H_{n} \backslash D\right)=0$.

In real problems, it is not unusual that $P \ll Q$ for some probability $Q$ on $\mathcal{F}$ which makes $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ independent. This does not imply $\mathcal{D}=\mathcal{N}$ (see Examples 3.16 and 3.17 of [3]) but it suffices for atomicity of $P \mid \mathcal{D}$. Actually, it is enough that a couple of the $\mathcal{A}_{i}$ are independent under $Q$.
Theorem 4. $P \mid \mathcal{D}$ is atomic provided $P \ll Q$ for some probability measure $Q$ on $\mathcal{F}$ which makes $\mathcal{A}_{r}$ and $\mathcal{A}_{s}$ independent for some $r$, $s$.
Proof. Fix $H \in \mathcal{D}$ with $P(H)>0$ and let $P_{H}=P(\cdot \mid H)$. If $P_{H} \mid \mathcal{D}$ is nonatomic, the probability space $\left(\Omega, \mathcal{D}, P_{H} \mid \mathcal{D}\right)$ supports a real random variable with uniform distribution; see Section 2. Hence, it suffices to prove that each $\mathcal{D}$-measurable function $U: \Omega \rightarrow \mathbb{R}$ satisfies $P_{H}(U \in C)=1$ for some countable set $C \subset \mathbb{R}$. Further, since $P_{H} \ll P$, it is enough to show that $P(U \in C)=1$. Let $U: \Omega \rightarrow \mathbb{R}$ be $\mathcal{D}$-measurable. Then, $U=U_{i}$ a.s. for some $U_{i}: \Omega \rightarrow \mathbb{R}$ satisfying $\sigma\left(U_{i}\right) \subset \mathcal{A}_{i}$, $i=1, \ldots, k$. Define the countable set $C=\left\{c \in \mathbb{R}: Q\left(U_{s}=c\right)>0\right\}$. Since $U_{r}$ and $U_{s}$ are independent under $Q$,

$$
Q\left(U_{r} \notin C, U_{r}=U_{s}\right)=\int_{\left\{U_{r} \notin C\right\}} Q\left\{x: U_{s}(x)=U_{r}(\omega)\right\} Q(d \omega)=0 .
$$

Thus, $P \ll Q$ yields

$$
P(U \in C)=1-P\left(U \notin C, U=U_{r}=U_{s}\right)=1-P\left(U_{r} \notin C, U_{r}=U_{s}\right)=1
$$

For $k=2$, Theorem 4 reduces to Theorem 3.10 of [3].
Remark 5. Let $\mathcal{A}_{i}=\sigma\left(X_{i}\right)$ for all $i$, where $X_{i}: \Omega \rightarrow \mathcal{X}_{i}$ is a random variable and $\mathcal{X}_{i}$ a separable metric space (equipped with its Borel $\sigma$-field $\mathcal{B}_{i}$ ). Then, $P \mid \mathcal{D}$ need not be atomic even though

$$
\begin{equation*}
P\left(X_{i}=f\left(X_{j}\right)\right)=0 \tag{4}
\end{equation*}
$$

for all $i \neq j$ and all measurable functions $f: \mathcal{X}_{j} \rightarrow \mathcal{X}_{i}$. We mention this fact since, for some time, we conjectured $P \mid \mathcal{D}$ atomic under (4).

As an example, let $k=2, X_{1}=(U, W)$ and $X_{2}=(V, W)$, where $U, V, W$ are real independent random variables with nonatomic distributions. Take $\mathcal{X}_{i}=\mathbb{R}^{2}$ and $\mathcal{A}_{i}=\sigma\left(X_{i}\right)$ for $i=1,2$. Given a measurable function $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, one obtains $P\left(X_{2}=f\left(X_{1}\right)\right) \leq P\left(V=f_{1}(U, W)\right)=0$ since $V$ has nonatomic distribution and is independent of $(U, W)$. Likewise, $P\left(X_{1}=f\left(X_{2}\right)\right)=0$. However, $P \mid \mathcal{D}$ is nonatomic, as $\sigma(W) \subset \mathcal{D}$ and $W$ has nonatomic distribution.

Finally, we state a simple but useful fact as a lemma. Let $Q$ be a probability measure on $\mathcal{F}$. Say that $P$ and $Q$ are equivalent on rectangles in case

$$
\begin{gathered}
P(A)=0 \Leftrightarrow Q(A)=0 \text { for each } A \in \mathcal{R}, \\
\text { where } \mathcal{R}=\left\{\cap_{i=1}^{k} A_{i}: A_{i} \in \mathcal{A}_{i}, i=1, \ldots, k\right\} .
\end{gathered}
$$

If $A \in \mathcal{R}$, then $A^{c}$ is a finite union of elements of $\mathcal{R}$. Hence, $P(A)=1 \Leftrightarrow Q(A)=1$ and $P(A \Delta B)=0 \Leftrightarrow Q(A \Delta B)=0$ whenever $A, B \in \mathcal{R}$ and $P, Q$ are equivalent on rectangles. Note that $\mathcal{A}_{i} \subset \mathcal{R}$ for all $i$. Note also that $P$ and $Q$ need not be equivalent on $\sigma(\mathcal{R})$ even though they are equivalent on rectangles.

Lemma 6. Let $P$ and $Q$ be equivalent on rectangles. If $D$ is an atom of $Q \mid \mathcal{D}_{Q}$, there is $A \in \mathcal{R}$ such that $Q(A \Delta D)=0$ and $A$ is an atom of $P \mid \mathcal{D}_{P}$. Moreover,

$$
\begin{gathered}
\mathcal{D}_{Q}=\mathcal{N}_{Q} \Leftrightarrow \mathcal{D}_{P}=\mathcal{N}_{P}, \text { and } \\
\mathcal{D}_{Q} \text { is atomic under } Q \Leftrightarrow \mathcal{D}_{P} \text { is atomic under } P .
\end{gathered}
$$

$\left(\right.$ Here,, $\mathcal{N}_{Q}$
$\left.\mathcal{D}_{P}=\mathcal{D}\right)$ $\left.\mathcal{D}_{P}=\mathcal{D}\right)$.
Proof. We first prove that, for each $D \in \mathcal{D}_{Q}$ with $Q(D)>0$, there is $A=A(D)$ satisfying $A \in \mathcal{A}_{1} \cap \mathcal{D}_{P}, Q(A \Delta D)=0$ and $P(A)>0$. Take in fact $A_{i} \in \mathcal{A}_{i}$ with $Q\left(A_{i} \Delta D\right)=0, i=1, \ldots, k$, and let $A=A_{1}$. Then $A \in \mathcal{A}_{1}, Q(A \Delta D)=0$ and $P(A)>0$. Since $Q\left(A_{i} \Delta A\right)=0$ for all $i$, then $P\left(A_{i} \Delta A\right)=0$ for all $i$, so that $A \in \mathcal{D}_{P}$. Next, let $D$ be an atom of $Q \mid \mathcal{D}_{Q}$ and $A=A(D)$. Then, $A \in \mathcal{A}_{1} \subset \mathcal{R}$. Given $G \in \mathcal{D}_{P}$, for each $i$ there is $G_{i} \in \mathcal{A}_{i}$ such that $P\left(G \Delta G_{i}\right)=0$. Again, $P\left(G_{i} \Delta G_{1}\right)=0$ for all $i$ implies $Q\left(G_{i} \Delta G_{1}\right)=0$ for all $i$, so that $G_{1} \in \mathcal{D}_{Q}$. Since $A$ is an atom of $Q \mid \mathcal{D}_{Q}($ as $Q(A \Delta D)=0)$, either $Q\left(A \cap G_{1}\right)=0$ or $Q\left(A \cap G_{1}^{c}\right)=0$. Accordingly, either $P(A \cap G)=P\left(A \cap G_{1}\right)=0$ or $P\left(A \cap G^{c}\right)=P\left(A \cap G_{1}^{c}\right)=0$, i.e., $A$ is an atom of $P \mid \mathcal{D}_{P}$. Next, if $\mathcal{D}_{Q}=\mathcal{N}_{Q}$, then $\Omega$ is an atom of $Q \mid \mathcal{D}_{Q}$. Thus, $A=A(\Omega)$ is an atom of $P \mid \mathcal{D}_{P}$ and $P(A)=1$, i.e., $\mathcal{D}_{P}=\mathcal{N}_{P}$. Finally, suppose $Q \mid \mathcal{D}_{Q}$ is atomic with (disjoint) atoms $D_{1}, D_{2}, \ldots$ Let $A_{j}=A\left(D_{j}\right)$ and $A=\cup_{j} A_{j}$. Then, each $A_{j}$ is an atom of $P \mid \mathcal{D}_{P}$, and $P(A)=1$ since $Q(A)=1$ and $A \in \mathcal{A}_{1} \subset \mathcal{R}$. Therefore, $P \mid \mathcal{D}_{P}$ is atomic.

## 5. Applications to Gibbs sampling

As remarked in Subsection 3.3, in a Gibbs sampling framework it is fundamental that $\mathcal{D}=\mathcal{N}$, or at least that $\mathcal{D}$ is atomic under $P$, when the $\mathcal{A}_{i}$ are given by

$$
\mathcal{A}_{i}=\sigma\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}\right)
$$

In this section, we let $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i$, where $X_{i}^{*}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k}\right)$ and the $X_{i}$ are random variables on $(\Omega, \mathcal{F}, P)$ with values in the measurable spaces $\left(\mathcal{X}_{i}, \mathcal{B}_{i}\right), i=1, \ldots, k$. We also let $\mathcal{D}_{0}=\cap_{i} \overline{\sigma\left(X_{i}\right)}$. Since $\mathcal{D}_{0} \subset \mathcal{D}, P$ is 0-1-valued or atomic on $\mathcal{D}_{0}$ whenever it is so on $\mathcal{D}$.

Let $\mathcal{X}=\prod_{i=1}^{k} \mathcal{X}_{i}$ and let $\mathcal{B}=\prod_{i=1}^{k} \mathcal{B}_{i}$ denote the product $\sigma$-field on $\mathcal{X}$. Define two measures on $\mathcal{B}$ as

$$
\gamma(\cdot)=P\left(\left(X_{1}, \ldots, X_{k}\right) \in \cdot\right) \quad \text { and } \quad \mu=\mu_{1} \times \ldots \times \mu_{k}
$$

where each $\mu_{i}$ is a $\sigma$-finite measure on $\mathcal{B}_{i}$. Thus, $\gamma$ is the probability distribution of $\left(X_{1}, \ldots, X_{k}\right)$ and $\mu$ a $\sigma$-finite product measure.

By Theorem 4, it follows that $P \mid \mathcal{D}_{0}$ is atomic whenever $\gamma \ll \mu$. Whether or not $\gamma \ll \mu$ implies $P \mid \mathcal{D}$ atomic is a bit more delicate and is the main focus of this section. We start by noting that, in the independent case, things are as expected.

Lemma 7. Let $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i$ and

$$
\mathcal{D}_{j}=\cap_{i=1}^{j} \overline{\sigma\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j}\right)}, \quad j=2, \ldots, k
$$

If $X_{j}$ is independent of $\left(X_{1}, \ldots, X_{j-1}\right)$, then $\mathcal{D}_{j}=\mathcal{D}_{j-1}$. In particular, if $X_{1}, \ldots, X_{k}$ are independent, then $\mathcal{D}=\mathcal{N}$ and $H=\left\{X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right\}$ is TIP as far as $B_{i} \in \mathcal{B}_{i}$ for all $i$ and $P(H)>0$.

Proof. Since $\mathcal{D}_{j-1} \subset \mathcal{D}_{j}$, it suffices to prove $\mathcal{D}_{j-1} \supset \mathcal{D}_{j}$. Let $A \in \mathcal{D}_{j}$. Then, $I_{A}=f_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j}\right)$ a.s. for some bounded measurable function $f_{i}$, $i=1, \ldots, j$. Let $\alpha_{j}$ denote the probability distribution of $X_{j}$. If $X_{j}$ is independent of $\left(X_{1}, \ldots, X_{j-1}\right)$, then

$$
\begin{gathered}
I_{A}=E\left(I_{A} \mid X_{1}, \ldots, X_{j-1}\right) \\
=E\left(f_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j}\right) \mid X_{1}, \ldots, X_{j-1}\right) \\
=\int f_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j-1}, t\right) \alpha_{j}(d t) \quad \text { a.s. for each } i<j
\end{gathered}
$$

Thus, $A \in \mathcal{D}_{j-1}$. Next, suppose $X_{1}, \ldots, X_{k}$ are independent. By what already proved,

$$
\mathcal{D}=\mathcal{D}_{k}=\mathcal{D}_{k-1}=\ldots=\mathcal{D}_{2}=\overline{\sigma\left(X_{1}\right)} \cap \overline{\sigma\left(X_{2}\right)}=\mathcal{N}
$$

or equivalently $\Omega$ is TIP. Since $X_{1}, \ldots, X_{k}$ are still independent under $P(\cdot \mid H)$, it follows that $\Omega$ is $P(\cdot \mid H)$-TIP, that is, $H$ is $P$-TIP.

The independence assumption can be considerably relaxed. Next result is inspired to Corollary 3.7 of [3].

Theorem 8. Suppose $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i, \gamma \ll \mu$ and $f$ is a version of $\frac{d \gamma}{d \mu}$. Let

$$
H=\left\{\left(X_{1}, \ldots, X_{k}\right) \in B\right\} \quad \text { where } B \in \mathcal{B} \text { and } B \subset\{f>0\}
$$

Then, $H$ is TIP provided

$$
\begin{equation*}
\cup_{i=1}^{k}\left\{X_{i}^{*} \in B_{i}^{*}\right\} \supset H \supset \cap_{i=1}^{k}\left\{X_{i} \in B_{i}\right\}, \quad \text { where } B_{i}^{*}=\times_{j \neq i} B_{j} \tag{5}
\end{equation*}
$$

$$
\text { for some } B_{i} \in \mathcal{B}_{i}, i=1, \ldots, k \text {, with } P\left(X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right)>0 \text {. }
$$

Proof. It can be assumed $(\Omega, \mathcal{F}, P)=(\mathcal{X}, \mathcal{B}, \gamma)$ and $X_{1}, \ldots, X_{k}$ the canonical projections (so that $H=B$ ). For each $i$, since $\mu_{i}$ is $\sigma$-finite, there is a probability $Q_{i}$ on $\mathcal{B}_{i}$ equivalent to $\mu_{i}$. Let $Q=Q_{1} \times \ldots \times Q_{k}$ denote the corresponding product probability on $\mathcal{B}$. Since $P \ll Q$ and $P(H)>0$, then $Q(H)>0$. Since $f>0$ on $H$, then $Q(\cdot \mid H)$ is equivalent to $P(\cdot \mid H)$. Thus, $H$ is $P$-TIP if and only if it is $Q$-TIP. We next prove that $H$ is $Q$-TIP. Let $K=\left\{X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right\}$. Since $Q(K)>0$ (due to $P(K)>0$ ) and $X_{1}, \ldots, X_{k}$ are independent under $Q$, Lemma 7 implies that $K$ is $Q$-TIP. Fix $A_{i} \in \mathcal{A}_{i}$ with $Q\left(A_{i} \Delta A_{1} \mid H\right)=0, i=1, \ldots, k$. Since $K$ is $Q$-TIP and $K \subset H$, then $Q\left(A_{1} \mid K\right) \in\{0,1\}$, say $Q\left(A_{1} \mid K\right)=0$ (so that $Q\left(A_{i} \mid K\right)=0$ for all $\left.i\right)$. Given $j$, since $Q\left(X_{j} \in B_{j}\right)>0$ and

$$
Q\left(A_{j}, X_{j}^{*} \in B_{j}^{*}\right) Q\left(X_{j} \in B_{j}\right)=Q\left(A_{j}, X_{j}^{*} \in B_{j}^{*}, X_{j} \in B_{j}\right)=Q\left(A_{j} \cap K\right)=0
$$

then $Q\left(A_{j}, X_{j}^{*} \in B_{j}^{*}\right)=0$. Also, $\left\{X_{j}^{*} \in B_{j}^{*}\right\} \cap\left\{X_{r} \notin B_{r}\right\}=\emptyset$ for $j \neq r$ and $H \subset \cup_{i=1}^{k}\left\{X_{i}^{*} \in B_{i}^{*}\right\}$. Thus, letting $A=\cap_{i} A_{i}$,

$$
\begin{aligned}
& Q\left(A_{1} \cap H\right)=Q(A \cap H)=Q\left(A \cap H \cap K^{c}\right) \\
& \leq Q\left(A \cap\left(\cup_{j}\left\{X_{j}^{*} \in B_{j}^{*}\right\}\right) \cap\left(\cup_{r}\left\{X_{r} \notin B_{r}\right\}\right)\right) \\
& \leq \sum_{j} \sum_{r} Q\left(A, X_{j}^{*} \in B_{j}^{*}, X_{r} \notin B_{r}\right) \\
& =\sum_{j} Q\left(A, X_{j}^{*} \in B_{j}^{*}, X_{j} \notin B_{j}\right) \\
& \quad \leq \sum_{j} Q\left(A_{j}, X_{j}^{*} \in B_{j}^{*}\right)=0 .
\end{aligned}
$$

Thus, $H$ is $Q$-TIP, and this concludes the proof.
By Theorem 8, $\mathcal{D}=\mathcal{N}$ in case $\gamma \ll \mu$ and condition (5) holds with $B=\{f>0\}$.
Example 9. Let $X_{3}=X_{1} X_{2}$ where $X_{1}$ and $X_{2}$ are i.i.d. random variables with values in $\{-1,1\}$ and $P\left(X_{1}=-1\right)=P\left(X_{1}=1\right)=\frac{1}{2}$. Let $\mu_{1}=\mu_{2}=\mu_{3}$ be counting measure on $\{-1,1\}$ and $\mathcal{D}_{0}=\cap_{i} \overline{\sigma\left(X_{i}\right)}$. Since the $X_{i}$ are pairwise independent (even if not independent), $\mathcal{D}_{0}=\mathcal{N}$. Since $P\left(X_{3}=1\right)=\frac{1}{2}$ and $\mathcal{D} \supset \sigma\left(X_{3}\right)$, then $\mathcal{D} \neq \mathcal{N}$. Thus, $\mathcal{D}_{0}=\mathcal{N}$ and $\gamma \ll \mu$ do not imply $\mathcal{D}=\mathcal{N}$. Note also that $\cup_{i=1}^{3}\left\{X_{i}=1\right\}=\Omega, P\left(X_{1}=X_{2}=X_{3}=1\right)>0$ while $H=\Omega$ is not TIP. Thus, condition (5) cannot be weakened into

$$
\cup_{i=1}^{k}\left\{X_{i} \in B_{i}\right\} \supset H \supset \cap_{i=1}^{k}\left\{X_{i} \in B_{i}\right\} \quad \text { with } \quad P\left(X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right)>0
$$

Our last and main result is that $\mathcal{D}$ is atomic under $P$ as far as $\gamma \ll \mu$.
Theorem 10. Let $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$ for all $i$. If $\gamma \ll \mu$, then $P \mid \mathcal{D}$ is atomic.
Proof. Let $Q$ be a probability measure on $\mathcal{F}$ which makes $X_{1}, \ldots, X_{k}$ independent. Denote $M_{Q}$ the class of those probabilities $\mathbb{P}$ on $\mathcal{F}$ such that $\mathbb{P} \ll Q$ and

$$
\mathcal{N}_{\mathbb{P}}=\{F \in \mathcal{F}: \mathbb{P}(F) \in\{0,1\}\}, \quad \mathcal{D}_{\mathbb{P}}=\cap_{i=1}^{k} \sigma\left(\sigma\left(X_{i}^{*}\right) \cup \mathcal{N}_{\mathbb{P}}\right), \quad \text { with } \mathbb{P} \in M_{Q}
$$

Arguing by induction on $k$, we now prove that each $\mathbb{P} \in M_{Q}$ is atomic on $\mathcal{D}_{\mathbb{P}}$.
Let $k=2$ and $\mathbb{P} \in M_{Q}$. Since $X_{1}^{*}=X_{2}$ and $X_{2}^{*}=X_{1}$, then $\mathbb{P}$ is atomic on $\mathcal{D}_{\mathbb{P}}$ by Theorem 4.

Given $k \geq 3$, define $V_{i}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{k-1}\right)$. By induction, suppose that each $\mathbb{P} \in M_{Q}$ is atomic on

$$
\mathcal{V}_{\mathbb{P}}=\cap_{i=1}^{k-1} \sigma\left(\sigma\left(V_{i}\right) \cup \mathcal{N}_{\mathbb{P}}\right) .
$$

We have to prove that each $\mathbb{P} \in M_{Q}$ is atomic on $\mathcal{D}_{\mathbb{P}}$. Accordingly, we fix $\mathbb{P} \in M_{Q}$ and a $\mathcal{D}_{\mathbb{P}}$-measurable function $U: \Omega \rightarrow \mathbb{R}$. Arguing as in the proof of Theorem 4 , it suffices to show that $\mathbb{P}(U \in C)=1$ for some countable set $C \subset \mathbb{R}$.

Since $\sigma(U) \subset \mathcal{D}_{\mathbb{P}}$ and $\mathcal{A}_{i}=\sigma\left(X_{i}^{*}\right)$, one obtains $\mathbb{P}\left(U=f_{i}\left(X_{i}^{*}\right)\right)=1, i=1, \ldots, k$, for some real measurable function $f_{i}$ on $\left(\prod_{j \neq i} \mathcal{X}_{j}, \prod_{j \neq i} \mathcal{B}_{j}\right)$. Let

$$
\begin{gathered}
A_{x}=\left\{f_{1}\left(V_{1}, x\right)=\ldots=f_{k-1}\left(V_{k-1}, x\right)\right\} \quad \text { for } x \in \mathcal{X}_{k} \\
F(t, x)=Q\left(A_{x} \cap\left\{f_{1}\left(V_{1}, x\right) \leq t\right\}\right) \quad \text { for } t \in \mathbb{R} \text { and } x \in \mathcal{X}_{k} .
\end{gathered}
$$

Since $F(t, \cdot)$ is $\mathcal{B}_{k}$-measurable for fixed $t, F$ is a real cadlag process on the measurable space $\left(\mathcal{X}_{k}, \mathcal{B}_{k}\right)$. Let $J=\{(t, x): F(t, x)>F(t-, x)\}$ be the jump set of $F$. By a well known result (see e.g. [9], Proposition 2.26), $J$ is contained in a countable union of graphs, that is,

$$
J \subset \cup_{n}\left\{\left(g_{n}(x), x\right): x \in \mathcal{X}_{k}\right\}
$$

for suitable $\mathcal{B}_{k}$-measurable functions $g_{n}: \mathcal{X}_{k} \rightarrow \mathbb{R}, n=1,2, \ldots$.
Fix $x \in \mathcal{X}_{k}$ with $Q\left(A_{x}\right)>0$ and define $Q_{x}(\cdot)=Q\left(\cdot \mid A_{x}\right)$. Then, $Q_{x}$ is atomic on $\mathcal{V}_{Q_{x}}$ (since $Q_{x} \in M_{Q}$ ) and $f_{1}\left(V_{1}, x\right)$ is $\mathcal{V}_{Q_{x}}$-measurable (since $Q_{x}\left(A_{x}\right)=1$ ). Thus, $F(\cdot, x)$ is a purely jump function, that is, $Q\left(A_{x} \cap\left\{f_{1}\left(V_{1}, x\right) \notin J_{x}\right\}\right)=0$ where $J_{x}=\{t: F(t, x)>F(t-, x)\}$. Integrating over $x$ yields

$$
\begin{gathered}
Q\left(f_{1}\left(X_{1}^{*}\right)=\ldots=f_{k-1}\left(X_{k-1}^{*}\right)\right) \\
=Q\left(f_{1}\left(X_{1}^{*}\right)=\ldots=f_{k-1}\left(X_{k-1}^{*}\right)=g_{n}\left(X_{k}\right) \text { for some } n\right)
\end{gathered}
$$

Let $C=\left\{c \in \mathbb{R}: Q\left(f_{k}\left(X_{k}^{*}\right)=c\right)>0\right\}$. Since $f_{k}\left(X_{k}^{*}\right)$ and $g_{n}\left(X_{k}\right)$ are independent under $Q$, then $Q\left(f_{k}\left(X_{k}^{*}\right) \notin C, f_{k}\left(X_{k}^{*}\right)=g_{n}\left(X_{k}\right)\right)=0$ for all $n$. Hence,

$$
\begin{gathered}
Q\left(f_{k}\left(X_{k}^{*}\right) \notin C \text { and } f_{1}\left(X_{1}^{*}\right)=\ldots=f_{k}\left(X_{k}^{*}\right)\right) \\
\leq Q\left(f_{k}\left(X_{k}^{*}\right) \notin C \text { and } f_{k}\left(X_{k}^{*}\right)=g_{n}\left(X_{k}\right) \text { for some } n\right)=0 .
\end{gathered}
$$

Therefore, $\mathbb{P} \ll Q$ and $\mathbb{P}\left(U=f_{i}\left(X_{i}^{*}\right)\right)=1$ for all $i=1, \ldots, k$ imply

$$
\mathbb{P}(U \in C)=1-\mathbb{P}\left(f_{k}\left(X_{k}^{*}\right) \notin C \text { and } f_{1}\left(X_{1}^{*}\right)=\ldots=f_{k}\left(X_{k}^{*}\right)\right)=1
$$

Since $C$ is countable, $\mathbb{P}$ is atomic on $\mathcal{D}_{\mathbb{P}}$. This concludes the induction argument and proves that each $\mathbb{P} \in M_{Q}$ is atomic on $\mathcal{D}_{\mathbb{P}}$.

Finally, to prove $P$ atomic on $\mathcal{D}=\mathcal{D}_{P}$, it can be assumed $(\Omega, \mathcal{F}, P)=(\mathcal{X}, \mathcal{B}, \gamma)$ and $X_{1}, \ldots, X_{k}$ the canonical projections. Also, since $\mu$ is a $\sigma$-finite product measure, $\mu$ is equivalent to some probability $Q$ on $\mathcal{B}=\mathcal{F}$ which makes $X_{1}, \ldots, X_{k}$ independent. Hence, $\gamma \ll \mu$ implies $P=\gamma \ll Q$. This concludes the proof.

Note that Theorem 4 could be obtained as a corollary of previous Theorem 10. However, Theorem 4 has been stated as an autonomous result, since it is a useful preliminary step toward Theorem 10.

Finally, the scope of Theorems 8 and 10 can be enlarged via Lemma 6. Following this route, sometimes, the assumption $\gamma \ll \mu$ can be circumvented. Let $Z_{i}: \mathcal{X} \rightarrow \mathcal{X}_{i}$ denote the $i$-th canonical projection and $Z_{i}^{*}=\left(Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{k}\right)$. Moreover, suppose $\gamma$ is equivalent on rectangles to some probability $\nu$ on $\mathcal{B}$, i.e., $\gamma(A)=0 \Leftrightarrow \nu(A)=0$ for each set $A$ of the form $A=\left\{Z_{1}^{*} \in C_{1}, \ldots, Z_{k}^{*} \in C_{k}\right\}$ with $C_{i} \in \prod_{j \neq i} \mathcal{B}_{j}$ for all $i$. Then, $\mathcal{D}$ is atomic under $P$ provided $\nu \ll \mu$; cfr. Lemma 6 and Theorem 10. Or else, $\mathcal{D}=\mathcal{N}$ whenever $\nu \ll \mu$ and

$$
\cup_{i=1}^{k}\left\{Z_{i}^{*} \in B_{i}^{*}\right\} \supset\left\{\frac{d \nu}{d \mu}>0\right\} \supset \cap_{i=1}^{k}\left\{Z_{i} \in B_{i}\right\}
$$

for some $B_{1}, \ldots, B_{k}$ such that $\nu\left(Z_{1} \in B_{1}, \ldots, Z_{k} \in B_{k}\right)>0$; cfr. Lemma 6 and Theorem 8. Note also that, for $k=2$, equivalence on rectangles reduces to

$$
\gamma\left(B_{1} \times B_{2}\right)=0 \Leftrightarrow \nu\left(B_{1} \times B_{2}\right)=0 \quad \text { whenever } B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}
$$

As an example (suggested by an anonymous referee) suppose ( $X_{n}: n \geq 1$ ) is an exchangeable sequence of real random variables with Ferguson-Dirichlet mixing measure. For $k=2,\left(X_{1}, X_{2}\right)$ is distributed as

$$
\gamma\left(B_{1} \times B_{2}\right)=a \beta\left(B_{1}\right) \beta\left(B_{2}\right)+(1-a) \beta\left(B_{1} \cap B_{2}\right)
$$

where $0<a<1$ and $\beta$ is a probability on the real Borel sets. Then $\mathcal{D}=\mathcal{N}$, as $\gamma$ is equivalent on rectangles to $\beta \times \beta$. However, if $\beta$ is nonatomic, $\gamma$ fails to be absolutely continuous with respect to any $\sigma$-finite product measure. It can be shown that, for every $k \geq 2$, one obtains $\mathcal{D}=\mathcal{N}$ for $\left(X_{1}, \ldots, X_{k}\right)$ as well.

Acknowledgment: This paper benefited from the helpful suggestions of an anonymous referee.

## References

[1] Berti P., Pratelli L., Rigo P. (2006) Asymptotic behaviour of the empirical process for exchangeable data, Stoch. Proc. Appl., 116, 337-344.
[2] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given probability space, Prob. Theo. Rel. Fields, 137, 277-288.
[3] Berti P., Pratelli L., Rigo P. (2008) Trivial intersection of $\sigma$-fields and Gibbs sampling, Ann. Probab., 36, 2215-2234.
[4] Bhaskara Rao K.P.S., Bhaskara Rao M. (1983) Theory of charges, Academic Press.
[5] Burkholder D.L., Chow Y.S. (1961) Iterates of conditional expectation operators, Proc. Amer. Math. Soc., 12, 490-495.
[6] Delyon B., Delyon F. (1999) Generalization of von Neumann's spectral sets and integral representation of operators, Bull. Soc. Math. Fr., 127, 25-41.
[7] Diaconis P., Khare K., Saloff-Coste L. (2007) Stochastic alternating projections, Preprint, Dept. of Statistics, Stanford University, currently available at: http://www-stat.stanford.edu/~cgates/PERSI/papers/altproject-2.pdf
[8] Halmos P.R. (1947) On the set of values of a finite measure, Bull. Amer. Math. Soc., 53, 138-141.
[9] Karatzas I., Shreve S.E. (1991) Brownian motion and stochastic calculus (second edition), Springer.
[10] San Martin E., Mouchart M., Rolin J.M. (2005) Ignorable common information, null sets and Basu's first theorem, Sankhya, 67, 674-698.

Patrizia Berti, Dipartimento di Matematica Pura ed Applicata "G. Vitali", Universita' di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy

E-mail address: patrizia.berti@unimore.it
Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy
E-mail address: pratel@mail.dm.unipi.it
Pietro Rigo (corresponding author), Dipartimento di Economia Politica e Metodi Quantitativi, Universita' di Pavia, via S. Felice 5, 27100 Pavia, Italy

E-mail address: prigo@eco.unipv.it


[^0]:    2000 Mathematics Subject Classification. 60A10, 60J22, 62B99.
    Key words and phrases. Atomic probability measure - Gibbs sampling - Graphical models Intersection property - Iterated conditional expectations.

