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Abstract. The main purpose of the present paper is to give a unified account of the various characterizations
of nonsingular M-matrices and a unified “path” of the mathematical proofs concerning the equivalences of the
said characterizations. Some related classes of matrices are investigated and some economic applications are

discussed.
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1. Introduction

There is no need to emphasize the relevance of M-matrices in many theoretical and applied
sectors of Mathematics and Economic Analysis: indeed, this class of matrices appears in the
analysis of many linear economic models, such as the classical Leontief input-output model, the
various Sraffa models, but also, for example, in linear complementarity problems, finite Markov
chains, theory of stochastic processes, systems of linear or nonlinear equations, etc.

It is well known that a nonsingular M-matrix is a square (usually real) matrix C, of order

n, than can be expressed as
C=nul—A,

where A is a nonnegative matrix (i. e. A = [a;;], a;; =20, Vi, =1,...,n) and g > \*(A), where
A*(A) is the Frobenius eigenvalue of A (i. e. its spectral radius). If, in the above representation,
it holds u = A*(A), we speak of singular M-matrices or also general M-matrices. Of this last
class of matrices only few hints will be given in the present paper.

Many authors investigated the various characterizations of nonsingular M-matrices; we
quote only the basic papers of Fiedler and Ptak (1962), Plemmons (1977), Poole and Boullion
(1974), Magnani and Meriggi (1981) and the books of Berman and Plemmons (1994), Bapat
and Raghavan (1977), Seneta (1973), Windish (1989).

It seems that the term “M-matrix” was first used by Ostrowski (1937), in honour of the
German mathematician H. Minkowski. Some authors use the term “/C-matrices” (for example
Fiedler and Ptak (1962), perhaps in honour of the Russian mathematician D. M. Kotelyanskii,
quoted by these authors). The main purpose of the present paper is to present a unified “path”
of the mathematical proofs concerning the equivalence of the various characterizations proposed
in the literature for nonsingular M-matrices.
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Indeed, apart from the complete proof given by Fiedler and Ptak (1962), who, however,
take into consideration a relatively small group of characterizations, the other authors give
partial and synthetic proofs, which often make reference to previous results. For example,
Bapat and Raghavan (1997) use properties and results of the theory of matrix games; Magnani
and Meriggi (1981) give a quite long list of characterizations, with several interesting comments,
but with no proofs.

The paper is organized as follows. In Section 2 we precise the notations and the main def-
initions used in the sequel of the paper. Section 3 contains the characterizations of nonsingular
M-matrices taken into consideration in the present paper. Section 4 is concerned with the
proofs of the equivalences of the various characterizations. In Section 5 some extensions of the
class of nonsingular M-matrices are discussed, together with some connections of M-matrices
with other classes of matrices. In the final Section 6 some economic applications are discussed.

2. Notations and Main Definition

Unless otherwise stated, all matrices such as A = [a;;], are real square matrices of order
n, and vectors such as x, are real vectors of n elements, i. e. x € R". Vectors are considered as
column vectors, so the transpose of z, denoted by z ', is a row vector. The transpose of A is
denoted by AT; z* is the conjugate transpose of z (z* = 2" if x is real). A;, i = 1,...,n, denotes
the i-th row of A, wheeras A7, j = 1,...,n, denotes the j-th column of A. By [0] we denote the
matrix or the vector whose all entries are zero. By e € R"™ we denote the sum vector, i. e. the
vector whose all entries are 1 :

el =[1,1,,...,1].

Given two matrices A, B of the same order (not necessarily square), we put

o A2 B, if a;; 2 b, Vi, .

e A>B if A= B, A+#B.

o A> B, if a;; > b, Vi, .

In particular, if B = [0], the above inequalities characterize, respectively, a nonnegative
matrix, a semipositive matriz and a positive matriz.

The same conventions are used to compare two vector of R”.

The notations =, >, #, are used to denote the reverse properties. The notations <, <, <
.5, <, £ are now clear.

If A is a square real matrix of order n, then its main diagonal is described by a1, as9, ..., Gup,
whereas the elements a;;, ¢ # j, are said extra-diagonal elements or also off-diagonal elements.
If it holds

1< ] = Qjj = 0,

then A is an upper triangular matriz, whereas if
1> ] = Qjj = 0,

then A is a lower triangular matriz.



The class of Z-matrices is the class of square matrices with nonpositive extra-diagonal
elements:

AecZ = {i#j=a;; =0}.
We denote by Z7 the class of Z-matrices with a positive (main) diagonal:
AeZt < {A€Z ay;>0 Vi=1,...n}.
By D we denote the class of (square) diagonal matrices:
AeD < {i#j=a;; =0}.
Dt C D is the proper subset of D with a positive diagonal:
AeDt «— {AeD, a; >0, Vi=1,..,n}.

Obviously, the identity matrix I is contained in DT.

By diag(a;), i = 1,...,n, we intend the diagonal matrix with its main diagonal formed by
ay, g, ..., dy.

P denotes a permutation matriz, i. e. a matrix obtained by permuting the rows (or the
columns) of the identity matrix I. Note that P is an orthogonal matriz, i. e. P~! = PT,

Given the square matrix A, of order n, we call

e principal minor of order k of A every determinant of order k£ obtained from A by
considering k rows of A and the corresponding k columns (k = 1,...,n). We use the notations:

D17D27 ceey Dk, ,Dn = det(A)

We have
n\ n!
k) Kl(n—k)
principal minors of order k. As > ), Z = 2" — 1, we have on the whole 2" — 1 principal

minors from A of order n. Following Gale and Nikaido (1965) and Fiedler and Ptak (1966b), a
square matrix A of order n, is called a P-matrix or it belongs to the P-class, if all its principal
minors are positive.

e leading principal minor of order k (or North- West principal minor of order k or successive
principal minor of order k) of A, that determinant of order k obtained from A by considering
the first k rows and the first k columns of A (k= 1,...,n). We use the notations:

a1; Aaiz2 i3
Ay =ay, Ay =det [ M M2} A, = A, = det(A
1= a11, Qg =det , Ag=| an az as |,...,A, =det(A).
Q21 A22
31 Aaz2 ass



We say that the real square matrix A is quasi-positive definite (quasi-negative definite) if
v # 0] = 2TAz > 0 (27 Az < 0); if A is symmetric, the previous inequalities characterize,
respectively, the class of positive definite matrices and the class of negative definite matrices.

Note that A is quasi-positive definite (resp. quasi-negative definite) if and only if (A+AT)
is positive definite (resp. negative definite), i. e. on the grounds of well-known criteria, if and
only if every eigenvalue of (4 + A") is positive (negative) or if and only if the sequence of all
n leading principal minors of (A + AT) is formed by positive elements (by elements alternating
in sign, with the first element negative).

Let be given A = [0], A square of order n; we denote by A\*(A) its Frobenius eigenvalue

(or Frobenius root), i. e. A*(A) = max |\|, being o(A) the spectrum of A :
Aeo(A)

o(A)={A e C:det(A—-A)=0}.

It is well known that A*(A) is a real root of the characteristic equation of A = [0].

The square matrix A (not necessarily nonnegative) is a small matriz or a convergent matriz
if its spectral radius

p(A) = max [
Ao (A)

is less than unity: p(A) < 1. In this case we have (see, e. g., Varga (1962))

lim (A)* = [0],

k—+o00

where (A)* denotes the power of A of order k.

We recall that a square matrix A, of order n, is said to be decomposable or reducible if,
for some proper nonempty subset J of N = {1,2,...,n} it holds a;; =0 fori e Jand j ¢ J. A
is indecomposable or irreducible if A is not decomposable. Equivalently: A is decomposable if
and only if there exists a permutation matrix P such that

Ay A
PAPT — 11 12 :|
|: AZI A22 ’

with A1 square submatrix of A (and hence also Ay square) and at least one of the submatrices
Ao, A1 a zero matrix.

A powerful generalization of the previous characterization is given by the Gantmacher
normal form of A (see Gantmacher (1959)). We have the said normal form when, by means of
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a suitable permutation matrix P, which always exists, the matrix A is put into the form

[ An [0 - [0] [0] [0] [0] 7
0]  Ap - [0] [0] [0] [0]
o I T O R 0
PAP = Ag+171 Ag+1,2 Ag-&-l,g Ag-&-l,g—&-l [0] [0]
A9+2,1 Ag+2,2 e Ag+27g Ag+2vg+1 Ag+27g+2 e [0]
IV

where:

i) Each submatrix Ay, A, ..., Ass (“principal blocks”) is square and indecomposable (if
a submatrix is of order 1 it may be the zero element).

ii) If A is indecomposable, then PAPT = JAl = A= Ay, i. e. s=g=1.

iii) If s = g > 1, then

A11 [0] [O]
| B A O
0 [0 - Al

i. e. we have a so-called completely decomposable matrixz or diagonal-blocks matriz.
iv) With s > ¢ it holds

Bt = [Atla At?a ceey At,t—l] 7é [0] ; Vt =g + 1, .oy S

The Gantmacher normal form is unique, up to permutations within the principal blocks.
See Gantmacher (1959).

Another important concept related to square matrices (also complex) and to M-matrices, is
given by matrices with dominant diagonals. The original definition has been developed mainly
by Hadamard (1903).

Definition 1. A square real matrix A = [a;;] of order n is said to possess a row dominant
diagonal if
‘az’i| > Z ’CLU‘ , Vi = 1, (N
J#i

A has a column dominant diagonal if

laj;| > Z lai;|, Vj=1,..,n.
i#£]



If, moreover, a; > 0 (a; < 0), then A is said to possess, respectively, a positive (a negative)
row dominant diagonal or a positive (negative) column dominant diagonal.

The next definition is due to McKenzie (1960), even if also quite recently it has been
rediscovered by researchers in Linear Algebra and Matrix Theory.

Definition 2. A square real matrix A of order n has a row quasi-dominant diagonal (resp.
a column quasi-dominant diagonal) if there exists a diagonal matrix D € D* such that AD (or
DA) has a row dominant diagonal (or a column dominant diagonal) in the sense of Hadamard,
i. e. of Definition 1. In other words, there exist numbers

dy >0, dy >0,...,d, >0,

such that it holds, respectively,

dz|(l“| > Zdj |CLZ'j|, Vi=1,..,n; (1)
J#

dj |ajj| > Zdz |aij| , Vi=1,...,n. (2)
i#]

We have to note that (unlike Definition 1) if A has a row quasi-dominant diagonal, then
it has a column quasi-dominant diagonal and vice-versa (see, e. g., Giorgi and Zuccotti (2009),
Kemp and Kimura (1978), Magnani (1972-73)). Therefore it is convenient to speak only of
“matrices with a quasi-dominant diagonal”. If, in addition, a; > 0, 2 =1, ...,n, then A is said
to possess a positive quasi-dominant diagonal. Similarly, if, in addition, a; < 0,7 = 1,...,n,
then A is said to possess a negative quasi-dominant diagonal. The following properties are
well-known.

1) Matrices with a dominant diagonal are a proper subclass of matrices with a quasi-
dominant diagonal.
2) A matrix with a quasi-dominant diagonal is nonsingular.
3) If A (real and square) has a positive quasi-dominant diagonal, then all its principal
minors are positive (see also Ostrowski (1937)).
4) If A is indecomposable, then relations (1) and (2) can be rewritten with weak inequalities,
but with at least one strict inequality.

We recall also some notions on the “splits” of a square matrix A, of order n. First we note
that this matrix can be always expressed in a unique way, in the form

A=D(A)+ L(A)+U(A) (3)
where D(A) = diag(ay;), L(A) is a lower triangular matrix

0, if j >
Qij, 1fj<’L,

1) = ] - {
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and U(A) is an upper triangular matrix

0, ifj <1
UA) = [uy] = { Qg i% j_> i.

Every expression of the type (C, B and A square matrices of the same order)
C=B-A
is called a “split” of the matrix C. Obviously, a Z-matrix C' can be always expressed as
C=D-—A,

with D € D, A 2 [0], hence in the representation (3) of a Z-matrix C' it holds

Following Varga (1976), we put, with A square of order n,

Jo(A) = a [D(A) " (L(A) + UA) + (1 —a)I, a>0,

T (A) = (D(A) — aL(A)) " {(1 — a)D(A) + aU(A)}, a >0,
Va(A) = (D(A) —aU(A)) " {(1 — @) D(A) + aL(A)} (D(A) — aL(A)) "
A{(1 = )D(A) + aU(A)}, a>0.

Jo(A) is said “point Jacobi overrelaxation iteration matrix”; T, (A) is said “point-successive
overrelaxation iteration matrix” and V,(A) is said “point-symmetric successive overrelaxation
matrix”.

Always with A square, of order n, we denote by |A| the matrix whose all entries are the
moduli of the entries of A :

|A| = [ay;] = |aiz|, 4,7 =1,...,n.

In order to make no confusion with the determinant of A, we shall denote this last one by
det(A).

Q(A) is the equimodular set for A : if B is square of order n, then B € Q(A) if and only
if |B| = |A].

Z 4 18 the comparison matriz of A, i. e.

_ lag|, ifi=7
ZA_{ — lai;|, ifi#j.
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Obviously Z4 € Z and by this convention, A has a row dominant diagonal (a column
dominant diagonal) if and only if Zse > [0] (if and only if e" Z4 > [0]), whereas A has a row
quasi-dominant diagonal (in the sense of McKenzie) if and only if the system

{ ZAx > [O]
x> [0]

has a solution. A will have a column quasi-dominant diagonal if and only if the system

{ y' Za> 0]
y > [0]

has a solution.

The matrix A, of order (m,n), belongs to the class S or is an S-matrix if Az > [0] for some
x > [0] . Equivalently: for some x > [0] or for some z = [0] L.ndeed, if 2° is a nonnegative or a
semipositive vector such that Az° > [0], we can consider the vector 7 = 2° + ae, o = 0. Then
we have T > [0], Va > 0 and, moreover, there exist values of @ = 0 such that y = Az > [0],
being y a continuous function of a.

Other definitions and conventions will be recalled in the next sections, when needed.

3. Characterizations of Nonsingular M-matrices

In the present section we give a survey of the main characterizations of nonsingular
M-matrices. We try to operate distinctions among the various “groups” which have one or
more properties in common. We recall that we consider a real n-square Z-matrix C' = [¢;5],
with ¢;; £ 0, Vi # j; each item of the following list of characterizations is equivalent to the
proposition: “the Z-matrix C' is a nonsingular M-matrix”.

1. First Group. This group takes into consideration linear inequality or equality systems,
with sign conditions.

(C1) The system Cz > [0] admits a solution x = [0].

(C2)  The system Cz > [0] admits a solution = > [0].
(C3)  There exists y > [0] such that Cz = y admits a solution = = [0].
(C4) For any y = [0] the system Cz = y admits a solution x = [0].

Nikaido (1968, 1970) calls (C'1) (and the equivalent condition (C3)) the weak solvabil-
ity condition, with reference to a Leontief linear economic model, and calls (C4) the strong
solvability condition.

(C5)  There exists a matrix D € D% such that C'De > [0] .
(C6) C is a generalized positive matriz in the sense of Varga (1976a), i. e. there exists a
vector > [0] such that Cx > [0] and if C;z = 0, then C' admits a chain connecting i with

some j, such that Cjz > 0 (we say that C' admits the said chain if N = {1,2,...,n} contains
indices i = 41,149, ..., 7, = j such that ¢;;,, # 0, Vk = {1,2,...,h — 1}).
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(C7)  There exists a vector x > [0] such that

i. e. such that

{ Cz 2 [0]

(C8)  The system

admits no solution z.

Second Group. This group is concerned with properties of determinants of matrices associ-
ated to C, in particular principal minors and leading principal minors.

(C9)  All leading principal minors of C' are positive:

A >0, Ay >0,...,A, >0.

(C10)  All principal minors of order k, Dy, k = 1,...,n, are positive.

In economic analysis conditions (C9) and (C'10) are known as “Hawkins-Simon condi-
tions” (Hawkins and Simon (1949)), developed within the researches on the celebrated “Leon-
tief input-output model”. Hawkins and Simon (1949) proved condition (C'10) as an equivalent
condition for C' to be a nonsingular M-matrix; however, this condition had already been con-
sidered by Ostrowski (1937). Condition (C9) was proved by Geogescu-Roegen (1951, 1966)
who proved also the equivalence between (C9) and (C10). Following Gantmacher (1959), this
equivalence has also been proved by Kotelianskii (1952). Good proofs concerning conditions
(C9) and (C10) are given by Nikaido (1968, 1970), Kemp and Kimura (1978), Takayama (1985),
Woods (1978). See also the important paper of Debreu and Herstein (1953).

(C11)  Let Ny, N, ..., N,, be nonempty subsets of N = {1,2,....,n}, with Ny C Ny C ... C
N, = N, and M(z) = [Cij] , 4] € N;. Then det(M(l)) > 0, Vi € N.

(C12)  The matrix F' = —C verifies the Routh-Hurwitz stability criterion, i. e. if we denote

by s; the sum of all < 7 > principal minors of order i of F, and we put

po= | (FD'si, Vie N={12,...n}
’ 0, Vi > N,



it holds

kl k3 k5 k?Zz—l
1 ko ky Fai—o
O kl k3 e k2l*3 3
det 0 1 /{32 . k%_4 > O, Vi € N.
0 O k;

Third Group. The characterizations of this group are concerned with the possibility of
representing the matrix C' by means of a “split”, i. e. as a difference of two matrices, of the

type
C=B-A.

(C13)  There exists a matrix A = [0] and a real scalar u such that
C=pl—A, > N\(A.

We remark that it is always possible to write the Z-matrix C' in the above form, i. e.
C=upl—A peR, A=]0]. Indeed, it is sufficient to choose

1= max {eit,

and then to choose the matrix
A=ul -C

which is, by construction, a nonnegative matrix.

(C14)  There exists a real number p such that
(Wl = C) 2 0], p>A(ul=C).
(C15)  There exists a real number p = max {¢ii} such that p > X (ul — C).
(C16) It holds the implication
C=(ul—A), Az2[0]= pn>N(A).

(C17) It holds the implication

= rrg,\;({c“} = u>\(ul —C).

(C18) If R = C, with R € D, then R™! exists and, with D = diag(c;;), the matrix R~1(D—C)
is a small matrix.

(C19)  There exists a real number ;1 and a matrix A such that > 0, A =2 [0], C = [ul — A],
and the series . .

1 (1

()

Ho—o \ M
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is convergent (this series converges to (ul — A)~™t = C~! > [0]; see (C31)).
(C20) It holds the following implication:

1 ~+o00 1 k
{p>0, A=210], C=pl — A} = — Z (—A) is convergent.
oo \H
(C21)  The matrix C' admits the split
C=B-A,

with A and/or B is in the class of S-matrices, B~! exists and B~!A is a nonnegative small
matrix.

4. Fourth Group. This group is concerned with characterizations where the matrix C' is
decomposed into the product of two matrices.

(C22) There exist a permutation matrix P and two Z-matrices R and S, R lower triangular
and S upper triangular, both with a positive diagonal, such that

PCPT = RS.

(C23)  There exist two Z-matrices R and S, R lower triangular and S upper triangular, both
with a positive diagonal and with all leading principal minors positive, such that

C =RS.

5. Fifth Group. This group is concerned with characterizations of nonsingular M-matrices
which involve properties of quadratic forms.

(C24)  There exists a positive definite (symmetric) matrix A such that AC' is quasi-positive
definite.

(C25)  There exists a positive (symmetric) matrix A such that the symmetric matrix
(AC +CTA)

has all its eigenvalues positive.

(C26) There exists a positive definite (symmetric) matrix A such that
(AC + CTA)

has all its leading principal minors positive.
(C27)  There exist two matrices D € DT and E € D" such that

DCE
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is quasi-positive definite.
(C28) There exists a matrix D € D* such that DC' is quasi-positive definite.
(C29) There exists a positive definite (symmetric) matrix A such that

(AC +CTA)

is a Z-matrix and an S-matrix.

(C30) There exists a positive definite (symmetric) matrix A = [0] such that
(AC +CTA)

is a Z-matrix and an S-matrix.

6. Sixth Group. The characterizations of this group are concerned with properties of the
inverse of C' or of matrices related to the said inverse.

C31) The inverse of C' exists and it holds C~' > [0].

C32) IfWeZ, W =C,then W exists.

C33) IfWeZ" W =C, then W exists and C € ZT.

C34) There exist two nonnegative matrices R and S such that (RC'S)™! exists and it holds
(RCS)™ > [0].

7. Seventh Group. This group is concerned with characterizations related to the spectrum
of C' or to a particular transformation of C.

(
(
(
(

(C35) Each real eigenvalue of C' is positive:
{det(C =) =0, Ae R} = A > 0.
(C36) each eigenvalue of C' has a positive real part:
det(C'— A\) = 0 = Re(\) > 0.

In other words, if F' = (—C), then F' is a stable matriz. Some authors call condition
(C36), the condition characterizing positive stable matrices. Again: if C' € Z, then F = (—C)

is called in Economic Analysis a Metzler matriz or Metzlerian matix, in honour of the American
economist L. A. Metzler; see Metzler (1945).

(C37)  The matrix D = diag(c;;) € DT and [I — D'C] is a small nonnegative matrix.

(C38) Let A be a (symmetric) positive definite matrix. Then each eigenvalue of the Hadamard
product A« C = {a;jc;;} has a positive real part.

8. Eighth Group. This group of characterizations makes reference to properties of the main
diagonal of the matrix C.

(C39) The matrix C has a positive and quasi-dominant diagonal (in the sense of McKenzie).

12



(C40)  There exists D € DT such that C'D has a positive row dominant diagonal.

(C41)  To every real vector = # [0] it corresponds a diagonal matrix D = D(x) € D such
that 2" DCx > 0.

(C42)  To every real vector x # [0] it corresponds a diagonal matrix D = D(z), with a
nonnegative diagonal, such that " DCz > 0.

(C43) To every complex vector x # [0] it corresponds a diagonal matrix D = D(z) € D+
such that Re(z*DCz) > 0.

9. Ninth Group. This group is concerned with characterizations of nonsingular M-matrices,
expressed in terms of particular implications.

(C44)  For every vector = # [0] there exists always an index k such that x(Crz) > 0.
(C45)  The following implication holds:

x2[0]=>03:§[0].
(C46) The matrix C' “reverses the sign” of the zero vector only, i. e. it holds:
zi(Cix) 20, Vie N={1,2,...n} =z =10].
(C47) It holds the implixcation
Cr [0 =z #[0].
(C48) It holds the implication
Cr 2 [0l =z £[0].
(C49) It holds the implication

Czx 2 [0] =z 2 [0], for all z € R".

This property is usually described by saying that C' is a monotone matriz. See Collatz
(1952), Mangasarian (1968).

(C50)  The following implication holds:

DeD= {(DC)'>[0] < DeD}.

10. Tenth Group. The characterizations of this group are due to Varga (1976a) and are all
referred to the use of the so-called “over-relaxation iteration matrices”, important in the itera-
tive solution of systems of linear equations of high dimensions. See, e. g., Koehler, Whinston
and Wright (1975).

(C52)  For any A € Q(C) it holds p(J1(A)) < p(|1(A)]) = p(J1(Zc)) < 1.
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(C53)  Forany A € Q(C) and any 0 < a < 2,/ [1 4 p(J1(A))] it holds
p(Ja(A)) S ap(Ji(A)) + |1 —af < 1.

(C54)  For any A € Q(C) and any 0 < a < 2,/ [1 + p(|J1(A)|)] it holds
p(Ta(A)) = ap(|1(A)]) + |1 —af < 1.

(C55)  For any A € Q(C) and any 0 < a < 2,/ [1 + p(]J1(A)|)] it holds p(V,(A4)) < 1.

The previous list, taken essentially from Magnani and Meriggi (1981), has not the preten-
tion to be complete. There are some other characterizations of nonsingular M-matrices, due,
for example, to Poole and Boullion (1974), Plemmons (1977), Berman and Plemmons (1994).
Some of them are:

(C56)  For each signature matriz S there exists T > [0] such that
SCS > [0].

A signature matrix S is a square matrix S € D with diagonal entries £1).

(
(C57)  The matrix C' is nonsingular and C'+ D is nonsingular for each D € D™.
(C58)  The matrix C' 4+ «l is nonsingular for each o 2 0.
(C59)  The matrix C' + I is nonsingular and

G=(C+I)Y(C-T)

is convergent.
(C60) The inequalities C'z < [0], = = [0] have only the trivial solution and C' is nonsingular.

(C60) has been used by Bergthaller and Dragomirescu (1971) and by Giorgi (1987) to prove
the workability of the classical Leontief system. Note that if Cz < [0] has only the trivial
solution = [0], C' must be nonsingular. Bergthaller and Dragomirescu use the equivalent
condition:

“the system C'z < [0],x > [0] has no solution”,

which is characterization (C8) (and also (C47)).

We note that a necessary condition for C € Z to be a nonsingular M-matrix is that
diag(c;;) > 0, for all i = 1,...,n. We remark also that a matrix C' € Z is a nonsingular M-
matrix if and only if each principal submatrix of C'is a nonsingular M-matrix and thus satisfies
one of the equivalent conditions listed above.

Rather important is the following result, pointed out by Magnani and Meriggi (1981).

Theorem 1. The classes of Z-matrices and nonsingular M-matrices are algebraically closed
under the following transformations:

i) AC)=CT;

i)  f2(C)= DCE, with D € D, E € D;
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iii)  f3(C) = PCP', with P any permutation matrix.

In other words, we have the following further characterizations of nonsingular M-matrices:
(C61) C' is a nonsingular M-matrix;
(C62) For any D, E € DY, the matrix DCFE is a nonsingular M-matrix;

(C63) For any permutation matrix P, the matrix PCP' is a nonsingular M-matrix.

Proof. The fact that the class of Z-matrices is closed under the above transformations is
trivial: it is immediate to note that these transformations preserve both the sign and the
diagonal and extra-diagonal position of every element c;; of C. In order to prove that the same
properties hold for the class of nonsingular M-matrices, it is convenient to make reference to
characterization (C31) : the inverse of C' exists and it holds C~! > [0] (and hence C'~! has all
its lines semipositive). The determinant of f(C') becomes, respectively,

det(f,(C)) = det(C'T) = det(C);

det(f2(C)) = det(DCE) = det(D) det(C) det(E);
det(f3(C)) = det(PCP") = det(P) det(C) det(P") = det(C).
Hence f(C') is nonsingular if and only if C' is nonsingular. The inverse of f(C') becomes,
respectively,
[AO)] T =@ = (T
(O] = (DCE)™ = BT CT'D7Y
[fs(C)) " = (PCPT) = (PT)lc Pt = PCPT.

In the first case the lines of the inverse matrix are simply transposed, but their sign does
not vary. In the second case the element [c;;]~" of O~ has the same position in [f,(C)] ™", but
here the element is divided by dj;e;;, with d;; € D and ej; € E. As D, E € D%, the signs are
conserved. In the third case the permutation which generates f5(C) from C' is the same for
[£5(C)] ", which has therefore the same signs of C~'. Note that this allows to rewrite (C'9) as
(C10). . O

The transformation fi(C) allows to rewrite certain characterizations in their “dual”
form: for example, characterizations (C1), (C2), (C3), and (C4) which make reference to the
“productivity” of a linear economic model, such as the classical Leontief model, can be rewritten
in terms of “profitability” for the same model. In other words, for a linear economic model of
the Leontief type, i. e. without joint production, productivity and profitability are equivalent
properties. We have:

(C64) There exists a vector p which solves the system

{ p'C > 0]
p = [0].
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(C65) There exists a vector p which solves the system

{ p'C > [0]
p>[0].

(C66) There exists a vector v > [0] such that the system

(o

has a solution p.
(C67)  For any vector v = [0] the system

(e

has a solution p.

The transformation f5(C) is useful to obtain other characterizations of nonsingular M-
matrices, with the choice D € DT, E = I. We recall that in economic analysis a real square
matrix F' = [f;;] is called a Metzler matriz or Metzlerian matriz if f;; =2 0, Vi # j, i. e. if
—F € Z. It is well known (see, e. g., Kemp and Kimura (1978)) that if F' is Metzlerian, then it
is stable if and only if it is D-stable, i. e. DF is stable, VD € D*. In economic terms this means
that a Metzlerian equilibrium is stable regardless of the choice of the “adjustmeent speeds”.
See, e. g., Quirk and Saposnik (1968). These last authors call “totally stable” a square matrix
with every principal submatrix which is D-stable. In the Metzlerian case, also total stability
is equivalent to stability. Hence, also on the grounds of the transformation f»(C') and on what
said on the principal submatrices of nonsingular M-matrices, we have the following further two
characterizations of nonsingular M-matrices.

(C68) The matrix F' = (—C) is D-stable.

(C69) The matrix F' = (—C) is totally stable.

For a survey on stable and D-stable matrices in economic theory the reader is referred to
Giorgi (2003) and to Giorgi and Zuccotti (2015a).

The transformation f3(C) is useful to justify what previously said on the principal sub-
matrices of a nonsingular M-matrix. In particular, it is possible to obtain the following char-
acterization of a nonsingular M-matrix.

(C70)  Every “principal block” of the Gantmacher normal form of C is a nonsingular M-
matrix.

If C € Z is an indecomposable matriz, some of the previous characterizations can be
reformulated in a slightly different form. For example:

e In characterizations (C1) and (C2), instead of Cz > [0] it is possible to impose C'z > [0].

e In characterization (C3), instead of y > [0] it is possible to impose y > [0].
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e In characterization (C31) it is possible to impose C~* > [0] .

Hence, if C = (ul — A), with A = [0] and indecomposable, it will be (uI — A)~* > [0] if
and only if 1 > A*(A). This result is often presented as a corollary of the celebrated Perron-
Frobenius theorem for nonnegative indecomposable matrices. See, e. g., the classical paper of
Debreu and Herstein (1953). These authors give also a short proof of the equivalence:

(ul — A)"t > [0] <= {(uI — A) has all its principal minors positive} .

Moreover, Berman and Plemmons (1994) prove the following result, which may be consid-
ered a “reverse” statement of what previously remarked.

Theorem 2. Let A = [0] be a square matrix of order n; if C' = ul — A, where p > 0, then
C is nonsingular and C~! > [0] if and only if x4 > A\*(A). Moreover, C~! > [0] if and only if
1> A"(A) and A is indecomposable.

See also Aleskerov, Ersel and Piontovski (2011).

Fiedler and Ptak (1962, 1966a, b) prove many other properties of Z-matrices and of
nonsingular M-matrices (called K-matrices by these authors). We point out the following
ones.

I) Letbe Ac M, Be M, AB € Z. Then AB € M.
II) Letbe Ae M,Be Z, AB € M. Then B € M.
IIT) Letbe Ae M,Be€ Z, B2 A. Then:

i) BeM.

i) [0]<B1< AL

iti)  det(B) = det(A) > 0.

iv) A'B=2I;, BA™'>1.

v) BTUALT AB'LI.

vi) Bl'AeM; ABt e M.

vii)  w(B) 2 w(A), where

w(A) = min |A| and 0(A) ={ € C : |[A—-AI[|=0}.
A€o (A)

viii) 1—p(I —B'A)=1—p(I —AB™')=1/p(A'B) =1,/p(BA™'), where

A) = AL
p(A) = max [

IV)  Let be C € M and let us consider two matrices A and B such that
B>A>2C, BeZ.
Then A, B, B~'C and A~'C are nonsingular M-matrices and it holds
0<p(I-AC)Sp(I-B'C)< 1.
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We add some other “historical” considerations concerning the various characterizations
of nonsingular M-matrices. See also Berman and Plemmons (1994) and Plemmons (1977).
Following McKenzie (1957, 1960), the characterization (C4) could be obtained directly from
the results of Metzler (1945) and from the results of Hawkins and Simon, equivalent to (C'10).
This last characterization is quoted also by several economists, for example by Goodwin (1950),
Chipman (1950), Solow (1952). The same characterization is also important as it defines, for
square matrices (not necessarily Z-matrices), the class of P-matrices (see Section 5). The
characterization (C'13) has been proved by Varga (1962), as the related results of Ostrowski
(1937) and Fan (1958) make reference to strongest results. The characterization (C24) can be
directly obtained from the famous stability theorem of Lyapounov, popularized by the book of
Gantmacher (1966). By the same criterion, it is easy to prove that the matrix F' = (—C'), when
C verifies (C28), is a stable matrix, even if C' ¢ Z. See Arrow and McManus (1958), Quirk
and Ruppert (1965) and Quirk and Saposnik (1968). Tartar (1971) has proved that (C28) is a

necessary and sufficient condition for a Z-matrix to be a nonsingular M-matrix.

If the Z-matrix C is represented in the form C' = (A — A), with A = [0], A > \*(A),
then, by the characterization (C'13), C is a nonsingular M-matrix and C~! admits the series
expansion (“C. Neumann series”)

+
8

1

CH=(\-A)"= I

(A)F,

> =

£
I
=

where (A)* denotes the k-th power of A, and where (A)° = I. From the above series expansion
it appears evident that, being A = [0], every element of (A\] — A)~! does not decrease if \
decreases, or if one or more elements of A increase and the other ones remain unchanged. This
result is often used in the analysis of linear economic models; see, e. g., Debreu and Herstein

(1953).

The characterization (C44) is taken from the paper of Gale and Nikaido (1965). Really,
(C'44) is equivalent to (C'10) also when C' ¢ Z. See also Nikaido (1968).

4. Proofs of the Equivalences

I) We begin by considering the basic paper of Fiedler and Ptak (1962), which is one of the first
papers which provides a complete path of the mathematical proofs of the various equivalent
conditions considered by the said authors. The proof of the related theorem is rather short and
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elegant and can be evidenced by the following chain of implications.

cl) = ((2) = (C5) = (C40) =
= (C18) = ((C32)

I
(C35) <«= (C36)
4
(C10) < (C44)
Y
(c11) = (C22) =
= (C31) = (C1).

We add some comments on the above implications.

e (C5) = (C40).

The implication is proved by means of the concept of quasi-dominance of the matrix C'D,
with D € D*.

o (C40) = (C18) = (C32).

In the proof of the above implications the authors use the concept of “small matrix” (or
“convergent matrix”), the theorem of Perron and Frobenius and the properties of the series of
C. Neumann, of the type evidenced in (C'19) and (C20).

e (C35) = (C10).

For the proof of the said implication the authors use a sufficient condition so that a Z-
matrix is a nonsingular M-matrix. We remark that it is also possible to follow the method of
proof suggested by Debreu and Herstein (1952).

e (C11) = (C22).

The proof is an immediate consequence of Theorems 3.1 and 3.2 of Fiedler and Ptak (1962)
and of the fact that it is always possible to write the Z-matrix C' as a product C' = RS, with
R a lower triangular matrix and S an upper triangular matrix, R € Z*, S € Z*.

e (C35) < (C36) and (C10) <— (C44).

These coimplications are the unique directly proved by Fiedler and Ptak. We have to note
that the paper of Fiedler and Ptak does not make distinctions between original characterizations
and previous characterizations due to other authors. In particular we note that the equivalence
(C2) <= (C31) is due to Fan (1958).

IT) The equivalences of Nikaido.
The books of Nikaido (1968, 1970) contain a proof of the equivalences evidenced in the

following scheme.
(C9) = (C4) = (C3) = (09

(C31) < (C13)

The equivalence between (C4) and (C'31) is proved by means of the well known result on
the comparison between matrices (A = B if and only if Az = Bz, Vo = [0]). The equivalence
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between (C31) and (C13) is obtained by means of the Perron-Frobenius theorem. We have
to note that Nikaido, as a mathematician involved in economic theory, gives some interesting
comments on the above five equivalences. In particular, this author remarks the possibility
of rewriting some characterizations in a “dual form”, obtaining, for example, the equivalence
between productivity and profitability in linear economic models with no joint productions (e.
g. a Leontief model or a Sraffa model with simple production; see, e. g., Giorgi and Magnani

(1978)).

ITI) The equivalence of Tartar.
Tartar (1971) proves the following equivalence

(C31) <= (C28).

The result of Tartar is useful also for formulating new characterizations of nonsingular

M-matrices (see the point V) of the present section) and for establishing direct links with some
characterizations, such as (C27), (C38) and (C43).

IV) The equivalences of Varga.

The classical book of Varga (1962) contains various material on nonsingular M-matrices,
in particular the caracterizations (C'19), (C31) and (C37). His paper of 1976 (Varga (1976a))
contains several new characterizations, all proved by starting from (C13). More precisely, this
author proves that (C'13) is equivalent to:

(C2), (C3), (C6), (C7), (C23), (C52),, (C53), (C54) and (C55).
One of the interesting feature of the paper of Varga (1976a) is the introduction of new

extensions of the concept of diagonal dominance; for these questions see also Alefeld and Varga
(1976), Beauwens (1976) and Varga (1976b).

V) Proof of the other equivalences.

We wish now to complete the “path” of the mathematical proofs of the main characteri-
zations examined in the previous section. Obviously, in what follows C' € Z.

e (C12) «— (C36).

The matrix C' verifies (C'12) if and only if (—C') is a stable matrix; the Routh-Hurwitz
conditions are necessary and sufficient for the stability of a square matrix (not necessarily a
Z-matrix). As A is an eigenvalue of C' if and only if — A is an eigenvalue of (—C'), we have the
said equivalence.

e (C24) — (C36).

It is sufficient to follow the previous considerations, by noting that AC' is quasi-positive
definite if and only if A(—C) = —(AC) is quasi-negative definite, and hence that (C24) is
nothing but the reformulation of the classical stability criterion of Lyapounov for the matrix
(—=C). See, e. g., Gantmacher (1959), Quirk and Saposnik (1968).

e (C39) — (C36).

Ostrowski (1937) has proved that if a square matrix C' has a positive quasi-dominant
diagonal, then it is a P-matrix, i. e. all its principal minors are positive: This was shown
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also by McKenzie (1960). Hence if C' € Z, then C' is a nonsingular M-matrix. Maybe it was
McKenzie (1960) who first realized that the row quasi-dominance is equivalent to the column
quasi-dominance and that every Metzlerian matriz A (i. e. —A € Z) is stable if and only if A
has a negative quasi-dominant diagonal. This result allows to obtain at once the equivalence in
question, by recalling that (—C') has a negative quasi-dominant diagonal if and only if C' has
a positive quasi-dominant diagonal and that A is an eigenvalue of C' if and only if (—\) is an
eigenvalue of (—C).

o (C27) < (C28).

If the Z-matrix C verifies (C28), then C verifies, with E = I, (C27). If C verifies (C27),
then ' = CE € Z and verifies (C28), as there exists D € D' such that DF = DCE is
quasi-positive definite. Therefore F' = DCE € M and also C' € M. Therefore (C27) holds.

o ((25) «— (C26) < (C24).

These equivalences are immediate, by recalling the definitions of a quasi definite matrix
and of a definite matrix. Note that (AC + CT A) is symmetric.

o (C8) «— (C47).

As the system Cx = [0] always admits a solution, as well as the system x > [0], it is
evident that (C'47) is equivalent to (C8).

o (C8) «<— (C45).

The same previous considerations hold.

o (C47) — (C43).

If we put y = —z, then Cz < [0] is equivalent to Cy = [0] and = # [0] is equivalent to
y £ [0]. Hence (C47) is equivalent to

Cy 2 [0] =y £ 0],

which is just (C48).

o (C51) <= (C31).

If C verifies (C31), it holds C~! > [0], hence (DC)~' = C~'D~!, with D € D, and this
product is a nonnegative matrix if and only if D € D*. Hence from (C31) we obtain (C51).
Vice-versa, if C' verifies (C51), then it must hold C~! > [0], i. e. (C31).

o (C46) < (C10).

We note that the class M can be redefined, thanks to (C10), as the intersection between
the Z-matrices and the P-matrices and that (C'46) characterizes the P-matrices, thanks to a
result of Gale and Nikaido (1965). The same reasoning holds for (C'10).

o (031) < (C50).

If C verifies (C31), then C! exists and it holds C~' > [0], hence C verifies (C50). Vice-
versa, if C' verifies (C50), C~! exists and from (C50), with y = e* (k-th unit or standard vector
of R™), we have C~tef = (C~1)* > [0]. Hence (C31) is verified.

In order to prove the next results, the following remarks are useful, even if trivial.

Remark 1. Given the split C' = (uf — A), we have A = (ul — C).
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Remark 2. If C' € Z, in the split C' = (ul — A) we have A 2 [0] if
> y =
uzrglea]g({c“}, N ={1,2,...,n}.

See also what said in Section 3, after the characterization (C'13).

Remark 3. The number « is an eigenvalue of A = (uI — C) if and only if (u — «) is an
eigenvalue of C. Indeed, with C = (ul — A) = pl — (uI —C'), we have (A—al) = pl —C —al =
—[C — (1 — «)I]. Hence, det(A — al) =0 <= det(C — (p — a)l) = 0.

e (C16) — (C35).

Let (C35) hold. We first note that, with C' € Z, it is possible to obtain the split of (C'16) :
it is sufficient (Remarks 1 and 2) to choose i as in Remark 2. If ;1 < A*(A), being \*(A) an
eigenvalue of A, by Remark 3, (1 — A\"(A)) is an eigenvalue of C' and hence this matrix has a
nonpositive eigenvalue, in contrast with (C'35). Hence (C35) implies (C'16). Vice-versa, if (C'16)
holds, there exist infinite splits of C' which verify the first member of (C'16) and hence also the
second member will be verified.

o (Cl4) «— (C13).

Trivial, thanks to Remark 1.

o (O17) < (C18).

Trivial, thanks to Remarks 1 and 2.

(C15) <= (C14).

Trivial, thanks to Remarks 1 and 2.

o(C21) — (C1).

If C verifies (C1), then C verifies also (C21), by choosing B = C and A = [0]. With
these choices we have B— A = C — [0] = C, B = C € S (thanks to the definition of the
S-class), C' nonsingular (by the equivalence between (C1) and (C31)), B~'A = C~'[0] = [0],
and hence B~!'A small matrix, as a zero square matrix has all its eigenvalues equal to zero.
Now suppose that the Z-matrix C' verifies (C21). Then B~'C' = B™Y(B — A) = [ — B 'A.
But, being B~'A = [0], it holds B~'C € Z. Being B~'A a small matrix, we have also (by
(C13), with 1 instead of u and (B~'A) instead of A) that B~1A € M. Then, by (C31), we
have (B~!C)™' = C~'B = [0]. If B € S, then there exists a vector ¢ = [0] such that Bq > [0],
i. e. CC7'Bq>10],i. e. C(C7'Bq) > [0]. But being ¢ = [0] and C~'B 2 [0], we have also
that § = C~'Bq = [0] . Hence there exists ¢ = [0] solution of Cq > [0], i. e. (C'1) holds. If it
results A € S, then there exists = [0] such that Az > [0],i. e. C[(C™'B)(B™*A)]z > [0]. If
we put 7 = (C'B)(B~'A)z, being z, C~'B and B~'A nonnegative, we have that there exists
Z 2 [0] solution of CZ > [0], i. e. also in this case (C'1) holds.

e (C1) — (C29).

If the Z-matrix C verifies (C'1), then it verifies also the equivalent proposition (C28) :
there exists a matrix A € Dt which makes AC quasi-positive definite, i. e. (AC + CTA)
positive definite. Being A € DT, we have AC' € Z, (AC)T =CTA € Z and (AC+CTA) € Z.
By a result of Fiedler and Ptak (1966b), i. e.

B quasi-positive definite = B € P = B € §,
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we have that (AC +CTA) € S, as required by (C29).

Vice-versa, if C' verifies (C29), the Z-matrix (AC + CT A) is also an S-matrix. Hence it is
a nonsingular M-matrix, as it verifies (C'35). But being a symmetric matrix, all its eigenvalues
are positive. hence, if (C24) holds, then (C26) holds. The equivalences (C26) <= (C24)
and (C24) <= (C36) have been already proved and hence (C'36) holds, together with its
equivalent proposition (C'1).

o (C1) < (C30).

If C verifies (C30), then it verifies also (C'1), as just proved. Vice-versa, if C' verifies (C'1),
we obtain at once proposition (C'30), following the same proof of the previous equivalence.

o (C31) < (C34).

If C verifies (C31), then, with R = S = I, we have (RCS) nonsingular and (RCS)™! =
C~! > [0], and hence (C34) holds. If (C34) holds, by the existence and nonnegativity of
(RC'S)~!, we have that RC and S are nonsingular and we have that there exists Q = [0] such
that (RC'S)™! = Q. From this relation we have

STICT'R ' =Q; S(ST'CT'RTYR=SQR; C'=SQR.

From the last relation we have C~! > [0], being Q = [0], R = [0] and S = [0], hence
(C'31) holds.

e (C1) < (C8).

Let us suppose that C € Z verifies (C1). Then, also C'" verifies (C1), i. e. the system
C'x > [0] admits a solution x = [0]. By the theorem of the alternative of Ville (see, e. g.,
Cottle, Pang and Stone (2009), Gale (1960), Mangasarian (1969)), the system Cz < [0], z > [0]
does not admit a solution. Therefore from (C1) it follows (C8). Vice-versa, if (C8) holds, for
the same theorem of the alternative, there exists a solution ¢ = [0] of the system C'Tq > [0],
hence C'T verifies (C'1), but then also C verifies (C1).

o (C31) < (C49).

We recall the following result (see, e. g., Nikaido (1970), theorem 15.1): if A and B are
two real matrices of the same order, then it holds A = B if and only if Az = Bz, Vx = [0].
If C verifies (C31), then C~' > [0], hence C~'q = [0], Vg = [0], i. e. the implication
q = [0] = C~'¢ = [0] holds. Then we have

C(Cq) 2 [0] = (C'q) 2 [0].
If we put # = C~1q, we have a ono-to-one transformation which allows to write
Car 2 0] = 2 2 [0],
i. e. (C49).
Vice-versa, let us suppose that (C49) holds. We remark that if there exists a vector h

such that Ch = [0], then it will hold also C'(—h) = [0] and from (C49) we get h = [0] and
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(—h) 2 [0], i. e. h =[0]. Hence, (C49) implies that C' is nonsingular, which allows to rewrite
(C49), with z = C !¢, in the form

C(C™q) 2 [0] = C1q 2 [0],

42 [0]=C"q2 0], i e CTlg2 (0], Vg 2 [0].

Hence we get C~! > [0], i. e. (C31).

o (C28) < (C33).

If C verifies (C28), then there exists a diagonal matrix D € D such that DC is quasi-
positive definite; thanks to results of Johnson (1974), condition (C'38) holds. Vice-versa, from
(C38) we get, with P = I, that the matrix C' has all its eigenvalues with a positive real part,
i. e. C veifies (C35) and hence also its equivalent condition (C'28).

o (C10) < (C41).

If C verifies (C10), then C' is a P-matrix and by a result of Fiedler and Ptak (1966b), C
verifies (C41). Thanks to the same result, which characterizes the P-class, we have that (C'41)
implies (C'10).

e (C10) «— (C42).

The previous considerations hold also for this case.

o (033) « (C32).

The characterization (C33) is due to Poole and Boullion (1974) who prove its equivalence
to (C32), due to Fiedler and Ptak (1962). We have to observe that Poole and Boullion are
concerned with nonsingular M-matrices which belong to the Z*-class. Within this class the
proposition of Poole and Boullion

W >C, CeZt = det(W)+£0

is indeed a characterization of nonsingular M-matrices. We have adopted the form (C33), just
in order to take into account of Z-matrices for which we have not a priori informations on the
sign of the main diagonal elements. The equivalence of the present point is immediate, by the
fatc that C' € Z7 is a necessary condition such that C' € M.

5. Some Connections and Extensions

We give in the present section only some hints on the various classes of matrices connected
to nonsingular M-matrices or that are a generalization of this class. For further considerations
(the literature is indeed abundant) we refer the reader to the basic papers of Fiedler and Ptak
(1962, 1966ab, 1967) and Johnson (1974). Moreover: Berman and Plemmons (1994), Giorgi
and Zuccotti (2009, 2014, 2015a,b).

In the present paper we have taken into consideration nonsingular M-matrices, however,
also singular M-matrices have been introduced by various authors, as a generalization of the
first class of matrices. Some authors speak also of “general M-matrices”. See, e. g., Berman and
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Plemmons (1994), Neumann and Plemmons (1980) and Poole and Boullion (1974). Singular
M-matrices have many applications, similarly to nonsingular M-matrices, however singular
M-matrices are more difficult to study.

If M is a square (real) matrix of order n, with M € Z, then each of the following conditions
is equivalent to the statement “M is a singular M-matrix”.

a) All principal minors of M are nonnegative.

b) Every real eigenvalue of each principal submatrix of M is nonnegative.

¢) M + D is nonsingular for each positive diagonal matrix D.

d) For each = # [0] there exists a nonnegative diagonal matrix D such that

"Dz # 0 and ' MDx 2 0.

e
f) Every real eigenvalue of M is nonnegative.

g) M + al is nonsingular for each o > 0.

h) The real part of each nonzero eigenvalue of M is positive.

) The sum of all the k& x k principal minors Dy of M is nonnegative for k =1, ..., n.
)

i) M is nonnegative stable, i. e. the real part of each eigenvalue of M is nonnegative.
1) The matrix M can be represented in the form

M =sl — A,

where A 2 [0] and s = A"(A).

We have already introduced (see the characterization (C'36)) the class of Metzler matrices
or Metzlerian matrices, as those square matrices F' such that —F € Z,1. e. f;; 20, Vi # j.
Hence, the class of Metzler matrices is closely related to the class of nonsingular M-matrices.
Metzlerian matrices are important in the study of stability conditions for a Walrasian equi-
librium market. See, e. g., Giorgi (2003), Kemp and Kimura (1978), Quirk and Saposnik
(1968), Takayama (1985), Woods (1978). On the grounds of the previous results, the following
properties are immediate.

Theorem 3. Let A be a Metzler matrix of order n. Then the following conditions are equivalent.

1) A= M — oI, where M 2 [0] and o > \*(A).

2) A is a stable matrix, i. e. Re(\) < 0, for each eigenvalue \ of A.

3) A is D-stable, i. e. DA is stable for every D € D*.

4) A is totally stable, i. e. every principal submatrix of A is D-stable.

5) Every principal minor of A has the sign of (—1), i = 1, ..., n. This property, in economic
analysis, is described also by saying that A is “Hicksian”, in honour of the English economist
J. Hicks. Hicksian matrices are also called “AN/P-matrices”.

6) The leading principal minors of A have the sign of (—1)%,i =1, ...,n.

7) A has a negative quasi-dominant diagonal

8) A™! exists and it holds A~! < [0].

9) There exists a vector x > [0] such that Az < [0].
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Economists have tried to enlarge the class of Metzlerian matrices, in order to find more
general conditions assuring the stability of multiple competitive markets. A powerful general-
ization of Metzlerian matrices is given by the so-called Morishima matrices. See, e. g., Giorgi
and Zuccotti (2015b), Kemp and Kimura (1978), Quirk and Saposnik (1968). See also Bassett,
Habibagahi and Quirk (1967) and Quirk (1974).

Definition 3. A square (real) matrix A of order n is said to be a Morishima matriz if there
exist subsets J and K of N = {1,2,...,n} such that:

i) JNK = 2;

i1) JUK = N;

i11) if ¢ # j, then

0, fori,j € Jori,je€K,

0, otherwise.

aij 2
Qij =
By the previous definition we have that A is a Morishima matrix if it can be written in

the form ) A
A — 11 12 ]
{ Ay Ay |

where Aq; is a Metzlerian matrix of order r, 0 < r < n, Ay is a Metzlerian matrix of order
(n — ), and all entries in A;5 and As; are nonpositive. A can also be written as A = [*MI*,

where
r=[a B

with [; identity matrix of order r and I, identity matrix of order (n — r) and where M is a
Metzlerian matrix.

Theorem 4. Let A be a Morishima matrix of order n. Then the following conditions are
equivalent.

1) A=TI"(M — ol)I*, where M 2 [0] and o > \*(M).

2) A is a stable matrix.

3) A is a D-stable matrix.

4) A is a totally stable matrix.

5) A is Hicksian.

6) The leading principal minors of A have the sign of (—1)!, i =1, ..., n.
7) A has a negative quasi-dominant diagonal.
)

8) A~! exists, with
B B
A1 — 11 B2
{ Byy By |’

the partitionning corresponding to that of A, with all entries in B;; and By being nonpositive,
and all entries in By and By, being nonnegative (obviously A™! has every line different from
the zero vector).
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9) There exists a vector z = [z}, 2], where 2! < [0], 2! € R", % > [0], 22 € R"", such
that Br =y, y=[y', v*] , ¢ > (0], y' € R", 52 < [0], y? € R".

Another class of square matrices related to nonsingular M-matrices is the class of P-
matrices. This class was considered (with this name) by Fiedler and Ptak (1962) and by Gale
and Nikaido (1965), these last authors in order to establish for functions f : R" — R™ a global
univalence theorem. However, the concept of a P-matrix finds other useful applications, mainly
in the study of the stability conditions for a multiple exchange market. More precisely, the
so-called “Hicks perfect stability conditions” are given in terms of the signs of the principal
minors of the Jacobian of the excess demand functions: the negative of the said Jacobian must
be a P-matrix. As previously said in Theorem 3, in economic analysis it is said that the said
Jacobian is an “Hicksian matrix”.

Definition 4. A square matrix A of order n is said to be a P-matrix if all its principal minors
are positive.

We have the following results on P-matrices (see, e. g., Bapat and Raghavan (1997),
Berman and Plemmons (1994), Nikaido (1968), Kemp and Kimura (1978), Fiedler and Ptak
(1962, 1966b), Woods (1978)).

Theorem 5. Let A be a square matrix of order n. Then the following conditions are equivalent.
i) A is a P-matrix.
i1) Every real eigenvalue of each principal submatrix of A is positive.
i7i) For each = # [0] there exists a positive diagonal matrix D such that

z"ADz > 0.
iv) For each = # [0] there exists a nonnegative diagonal matrix D such that
z"ADz > 0.
v) The matrix A “reverses the sign” of the zero vector only, i. e.
{z;(Ax) £0, Vie {l,..,n}} =z =[0].

vi) For each signature matriz S (i. e. S is diagonal with diagonal entries £1), there exists
an z > [0] such that
SASz > [0].

A sufficient condition for A to be a P-matrix is that A has a positive quasi-dominant
diagonal (see. e. g., McKenzie (1960)). As previously remarked, P-matrices have been used to
obtain a global univalence theorem for functions f : R" — R".

Theorem 6 (Gale and Nikaido). If f : R® — R" is a differentiable mapping on the open
multi-dimensional interval / C R", and the Jacobian Jf(x) is a P-matrix for all z € I, then f
is univalent on I.

27



See also Garcia and Zangwill (1979) and Parthasarathy (1983). Another important field of
applications of P-matrices is the theory of Linear Complementarity Problems (LCP). See the
basic book of Cottle, Pang and Stone (2009).

Given a vector 7 € R™ and a (real) square matrix M of order n, find (if possible) z € R”
such that
w=r-+ Mz,
with w = [0], z = [0], zTw = 0.
A closely related class of P-matrices is the class of Py-matrices, introduced by Fiedler and

Ptak (1966b) and by Arrow (1974) in his analysis of the stability of a competitive equilibrium.
This class of square matrices represents the “closure” of the class of P-matrices.

Definition 5. A square matrix A of order n is said to be a Py-matriz or to belong to the
Po-class, if all its principal minors are nonnegative. The following equivalent characterizations
of the Py-class hold.

Theorem 7. Let A be a square matrix of order n. Then the following properties are equivalent.

1) All principal minors of A are nonnegative, i. e. A € Py.

2) For each vector = # [0] there exists an index k such that zj # 0 and x,y, = 0, where
y = Ax.

3) For each vector x # [0] there exists D, € D, D, = [0], such that 2" D,z > 0 and
2" A"Dyx > 0.

4) Every real eigenvalue of A as well as of each principal minor of A is nonnegative.

5) (A+¢el) € P, Ve > 0.

6) For any D € D (D of order n), (A+D) is a P-matrix.

7) For any D € D (D of order n), every real eigenvalue of DA is nonnegative.

Obviously, if A € P, then AT € P; if A € Py, then AT € P,.
Moreover, if A+ A" is positive definite (i. e. A is quasi-positive definite), then A € P. If
A+ AT is positive semidefinite, then A € P,.

Another class of square matrices related to M-matrices is the class of matrices with a
dominant diagonal or with a quasi-dominant diagonal, previously recalled in Section 2. Besides
the definitions given in Section 2, there are in the specialistic literature several other definitions
of matrices with a dominant diagonal. We quote only Varga (1976b), Beauwens (1976), De
Giuli, Magnani and Moglia (1994), Pearce (1974), Okuguchi (1976, 1978), Giorgi and Zuccotti
(2009), Magnani (1972-73). See also Kemp and Kimura (1978). We wish here to make some
considerations on the contribution of Fiedler and Ptak (1967), not often considered in the
literature. These authors consider two different notions of dominant diagonal matrices:

1) The square matrix A of order n has a strong dominant diagonal in the sense of Fiedler
and Ptak if there exists a matrix D € D such that B = D7'AD has a row dominant diagonal
(in the sense of Hadamard).

The above class of matrices coincides with the class of H-matrices introduced by Ostrowski
(1956).
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2) The square matrix A of order n has a weak dominant diagonal in the sense of Fiedler
and Ptak if there exists a matrix D € D such that for B = D71 AD it holds

This second definition is introduced by Fiedler and Ptak in order to define the class of the
W-matrices, which form the central subject of their paper. We shall not be concerned with the
above second definition. As for what concerns the first definition, Fiedler and Ptak present a
result which can be genaralized, in obtaining the following theorem.

Theorem 8. Let be A € Z. Then A € M if and only if there exist two diagonal matrices
D, E € D such that DAFE has a positive row (column) quasi-dominant diagonal.

The previous theorem is obtained by the characterization (C'39), recalling that a matrix
has a row quasi-dominant diagonal if and only if it has a column quasi-dominant diagonal and
recalling Theorem 1 (transformation fo(C')).

The results of Fiedler and Ptak (1967) suggest the possibility to introduce another definition
of matrices with a dominant diagonal, matrices we shall call “matrices with general dominant
diagonal”.

Definition 6. The square matrix A of order n has a general dominant diagonal if there
exist two matrices D, E € DT, such that, with T = DZ,E (T = D(Z4)"E), being Z4 the
comparison matrixz of A, it holds

Te = [0]; (4)

Te>U(T)e. (5)
On the above definition the following remarks may be useful.

Remark 4.

i) In Definiiton 6 the properties of T" are equivalent to the fact that 7" is a matrix with
dominant diagonal in the sense of Beauwens (1976) and Varga (1976b).

i1) Every matrix with a dominant diagonal is a matrix with a general dominant diagonal;
indeed, with D = E = I we have either T'e > [0] or T"e > [0] and, being U(T) < [0], (4) and
(5) both hold.

i71) A matrix has a general dominant diagonal if and only if it has a quasi-dominant
diagonal (in the sense of McKenzie). Indeed, if A has a row (column) quasi-dominant diagonal,
there exists £ € D (D € D") such that Z4Ee > [0] (e"' DZ4 > [0]) and Z4 has a positive
diagonal. Hence, with D = I (E = I) it holds, with T'= DZ,E (T = D(Z.)"E), Te > [0], i.
e. (4) holds. Being D, E € DT, we have that T' € Z and in the decomposition

T=Dr+Ur+ Lr=D(T)+U(T)+ L(T)

we have Ur < [0] and Ly < [0]. This gives Ure < [0] and from T'e > [0] we get relation (5). Vice-
versa if A has a general dominant diagonal, (4) and (5) hold, i. e. by characterization (C7), the
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Z-matrix T is a nonsingular M-matrix. As D, E € D", and the classes of Z-matrices and M-
matrices are closed with respect to the transformation f(Z4) = DZ4FE, we have that Z, € M
and, by characterization (C'39) we have that Z4 has a positive quasi-dominant diagonal, i. e.
A has a quasi-dominant diagonal.

iv) In a similar way it is possible to prove that A has a general dominant diagonal if and
only if either A or AT has a strong dominant diagonal in the sense of Fiedler and Ptak (1967).
See, in particular their theorem 1.2.

v) In conclusion, the notion of general diagonal dominance is substantially equivalent to
the quasi-diagonal dominance in the sense of McKenzie and to the strong diagonal dominance
in the sense of Fiedler and Ptak.

Another class of square matrices related to nonsingular M-matrices is the class of inverse-
positive matrices, i. e. those square matrices A for which A™! exists and A=' > [0], in the
sense that A~' has all semipositive lines (recall the characterization (C31) of nonsingular M-
matrices). Perhaps it would be more correct to speak of “inverse-semipositive matrices”. We
have the following result (see, e. g., Berman and Plemmons (1994), Plemmons (1977)).

Theorem 9. Let A be a square matrix of order n. Then the following conditions are equivalent.
a) A is inverse-positive, i. e. A7 exists and

A7t >10].
b) A is monotone, i. e.
Az 2 [0] = = 2 [0], Vo € R™.
¢) There exists an inverse-positive matrix B = A such that I — B~'A is convergent, i. e.

p(I — B7'A) < 1.
d) There exist inverse-positive matrices B and C' such that

B<A<C

e) There exists an inverse-positive matrix B 2 A and a nonsingular M-matrix C, such
that
A= BC.

f) There exists an inverse-positive matrix B and a nonsingular M-matrix C, such that
A= BC.
g) A has a convergent regular splitting, that is A has the following representation:
A=M—N, M~ >1[0], N = [0]

where M_1 N is convergent.
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h) A has a convergent weak reqular splitting, that is A has the following representation:
A=M—N, M >1[0] M'N =0

where M !N is convergent.

Another result on inverse-positive matrices is given by the following theorem, perhaps
more admitting of economic interpretations. See, e. g., Abad, Gasso and Torregrosa (2011).

Theorem 10. The real square matrix A of order n is inverse-positive if and only if for all
y > [0] there exists x > [0] such that Az = y.

Fujimoto and Ranade (2004) have provided a necessary condition for the inverse-positivity
of matrices by means of a generalization of the Hawkins-Simon conditions. Other related results
are in the papers of Bidard (2007), Eisner (Recte: Elsner), Olesky and van den Driessche (2009),
Fiedler and Grone (1981), Johnson (1983), Johnson, Leighton and Robinson (1979).

Obviously, the class of inverse-positive matrices contains the class of M-matrices, hence
the analysis of the class of inverse-positive matrices can be useful to study, e. g., those linear
economic models not described by a matrix A € Z. It is the case, for example, of linear models
with joint production, such as some models of P. Sraffa and the growth economic model of J.
von Neumann. See, e. g., Giorgi and Magnani (1978), Kurz and Salvadori (1995), Schefold
(1989), Peris and Villar (1993). For the von Neumann model see Murata (1977), Nikaido
(1968, 1970), Takayama (1985), Woods (1978). These models are usually described by two
semipositive matrices A and B, not necessarily square, where A is the matrix of the inputs
and B is the matrix of the outputs. If A and B are square, as in the models considered by P.
Sraffa, and if it happens that (B — A)~! > [0], economists speak of “all-productive” models, if
(B—A)"t > 0], of “all-engaging” models (see, e. g., Schefold (1989), Giorgi (2014)).

All-productive models (and all-engaging models) have several properties of single produc-
tion models, therefore they are easier to be analyzed, also form a matehmatical point of view.
See Schefold (1978). Obviously, if (B — A) € Z, then if any of the conditions of Section 3 holds,
it holds (B — A)™* > [0], i. e. the model is all-productive. Otherwise, Theorems 9 and 10
apply. We have however to remark that conditions ¢) and h) of Theorem 9 are not too conve-
nient for characterizing all-productive economic models, where “effective” joint production is
considered, i. e. B is not the identity matrix or a diagonal matrix. Indeed, a result of Johnson
(1983) states that a semipositive square matrix has a nonnegative (i. e. a semipositive) inverse
only if it is a diagonal matrix or a permutation of a diagonal matrix, and hence “effective”
joint production is ruled out by the above conditions ¢g) and h) of Theorem 9. We have to look
for other conditions. The following result of Peris (1991) is quite interesting; see also Giorgi
(2014), Peris and Villar (1993).

Definition 7. A split of a square matrix M = B — A, where A = [0], B = [0], is called a
positive split. A positive split is said to be a B-split if B is nonsingular and
a) Bx 2 [0] = Az = [0],
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b) For all x € R™ it holds

(J‘g)@m]:@[om

Notice that any Z-matrix has a B-split, but the converse is not true. Condition a) in
Definition 7 is equivalent to the existence of a nonnegative square matrix H, of order n, such that
A = HB, i. e., being B nonsingular by assumption, to AB~! = [0]. See Mangasarian (1971).
This condition (the input matrix cone contains the output matrix cone) is also introduced by
the English economist J. Hicks (1965) and considered, subsequently, also in the analysis of the
celebrated von Neumann growth model. See, e. g., Giorgi (2016), Los (1971), Thompson and
Weil (1971). We note, moreover, that, always under the above condition, the Perron-Frobenius
results apply for the problem Ax = ABx; see Mangasarian (1971).

Theorem 11. Let M be a square matrix such that M = B — A is a B-split. Then the following
conditions are equivalent:

(a) M is inverse-positive (i. e. the joint production economic model described by the pair
(A, B) is all-productive).

(b) \*(AB™!) < 1,i. e. AB! is small (or convergent).

(c) There exists some = > [0] such that Mz > [0] (i. e. the joint production economic
model described by the pair (A, B) is productive).

We have mentioned the assumption that in a joint production model described by the
pair (A,B), A = [0], B = [0], both square of order n, we have (B — A) € Z. Indeed,
this convenient assumption is adopted by some authors dealing with joint production Sraffa’s
models. However, in our opinion, its meaning, from a pure economic point of view, is doubtful.
It must be b;; < a;5, Vi # j, 1. e. the off-diagonal elements of the output matrix B must
be less or equal than the corresponding elements of the input matrix A. If this is meaningful
when B = I, in case we have an “effective” joint production, this is perhaps less meaningful.
Perhaps it is more economically meaningful to adopt the opposite assumption: (A — B) € Z,
i. e. (B—A) is a Metzlerian matriz, i. e. bj; 2 a;;, Vi # j. Under this assumption we have a
result, due to Buffoni and Galati (1974), concerning the inverse-positivity of (B — A).

Let M be a nonsingular indecomposable Metzlerian matrix of order n (the authors call
“essentially positive” such a matrix) and let be A(;) the matrix of order (n — 1) obtained from
M by deleting its i-th row and its i-th column. The matrix A(;) has a real eigenvalue y,; greater
than the real part of all other eigenvalues (see Varga (1962)).

Theorem 12. Under the above assumptions, necessary and sufficient conditions to have
M~ > [0] are:

(a) For some index ig, 1 < ig < n, it holds p,;, < 0;

(b) For every i = 1, ...,n, it holds

det(A(i))

0.
det(A)
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In particular, under the above assumptions, if M~ > [0] , we have

In Giorgi and Magnani (1978) there is the following example of M = (B — A), with M
Metzlerian and M~! > [0] :

02 5 L5 1 4
M=B-A=|12 2 |-]| 0 3 1]|=
53 2,5 4 2 4
~1,5 1 1
= 1 -1 1
1 1 -1,5

Obviously, if M = B— A, with A, B = [0], satisfies the assumptions under which Theorem
12 holds, then the joint production model described by (A, B) is all-engaging.

In the next extensions, due to Fiedler and Ptak (1966b), the related matrices are not
necessarily square.

Definition 8. A matrix A of order (m,n) is an S-matriz or a matriz of class S, if the system

{ Ax > [0]

z 2 (0]

admits a solution z.

We have previously remarked in Section 2 that equivalently a matrix A is in S if and
only if the system Az > [0] has a solution = > [0] or also x > [0]. The name of this class of
matrices derives from E. Stiemke, one of the first mathematicians to recognize the importance of
positivity in linear systems. See Stiemke (1915). Fiedler and Ptak (1966b) prove the following
result.

e The matrix A, of order (m,n), is an S-matrix if and only if for every vector p > [0],
p € R™, at least one component of p' A is positive.

If A is square, then a characterization of A as an S-matrix is related to the feasibility
of a linear complementarity problem; see, e. g., Cottle, Pang and Stone (2009). Economic
applications of the class of S-matrices will be discussed in the next section. In case A € S and
A is square, some authors call A “semipositive”, but we prefer to avoid this term, which may
generate confusions.

Definition 9. A matrix A of order (m,n) is an Sp-matriz if the system

{ Az 2 [0]

x > 10]

admists a solution z.
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Fiedler and Ptak (1966b) prove the following result:
e The matrix A, of order (m,n), is an Sp-matrix if and only if for every vector p = [0],
p € R™, at least one component of p' A is nonnegative.

The classes S and Sy are obviously related by the inclusion S C §p, but they are also
related by the Ville theorem of the alternative (see, e. g., Cottle, Pang and Stone (2009), Gale
(1960), Mangasarian (1969)):

e A be of order (m,n); then the system

Az > [0], x> 0]
admits a solution if and only if the system
y' A< (0], y=1[0]

admits no solution.

In terms of the classes & and Sy, the Ville theorem of the alternative can therefore be
described by the following equivalence

(A€S) <= ((-A") £ S).

Moreover (Fiedler and Ptak (1966b)): if A € P, then A € S;if A € Py, then A € Sp.

Definition 10. A matrix A of order (m,n) is an S;-matriz or an irreducibly So-matriz, if A
belongs to Sy and either n =1 (i. e. A has only one column) or n > 1 and no matrix obtained
from A by omitting at least one column belongs to Sp.

Fiedler and Ptak (1966b) denote by M the above class of matrices. We have adopted the
notation Sy, in order to avoid confusions with the class of M-matrices. Other characterizations
of the S;-class of matrices are contained in the next theorem.

Theorem 13. Let A be a matrix of order (m,n). Then the following conditions are equivalent.

i) AeS.
Ar = [0
x > 10]
admits only solutions z > [0].

i1) A € Sy and the system

iti) A € Sy and for every x # [0], solution of Az = [0], it holds either x > [0] or
r < Az =[0].

iv) A € S and, moreover, A verifies one of the following equivalent conditions.

iv.a) A admits a left-side generalized inverse A™ > [0], 1. e. ATA = 1.

iv.b) For any vector y > [0] there exists a solution p > [0] of the system p'A =y .

iv.c) rk(A) = n, and for every vector = such that Az > [0] it holds = > [0].

iv.d) Tk(A) = n — 1, and there exist vectors p > [0] and x > [0] such that p'A = [0],
Az = [0].
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iv.e) If Ax = 0] for = # [0], then it holds either Az = [0] < z or Az = [0] > x.

Other relevant results, proved by Fiedler and Ptak (1966b), concerning the S;-class of
matrices, are contained in the following theorem.

Theorem 14.

1) Let A be of order (m,n); if A € Sy, then m = n.

2) Let A be a square matrix of order n; then, the following two conditions are equivalent:

a) det(A) #0 and A € S;.

b) A~ > [0].

3) Let A be a square matrix of order n > 1; then, the following three conditions are
equivalent:

«) Both A and —A belong to S.

p) A €S and A is singular.

7v) A is singular and adj(A) is either positive or negative.

On the grounds of Theorem 14, point 2), it turns out that if the pair (A, B), A and
B both square of order n, and A = [0], B = [0], describe a joint production model, of the
type considered by P. Sraffa, then (B — A)~! > [0], i. e. the model is all-engaging, in the
terminology of B. Schefold (1978, 1989), if and only if det(B — A) # 0 and (B — A) € &;.
This result is almost never considered in the economic literature. See also Giorgi and Magnani
(1978), Giorgi (2014), Giorgi and Zuccotti (2014). As previously pointed out, all-engaging
models are important in the theory of linear economic models with joint production, as they
retain many relevant properties of single production models. See Schefold (1978).

6. Some Economic Applications

The class of M-matrices and the other classes of matrices considered in the previous section
have found several applications in a variety of fields: numerical analysis, linear complementarity
problems, differential and difference equations, stochastic processes, economic models, problems
of linear algebra, geometry, mathematical physics, etc. Economic applications of the class of M-
matrices are well known. See, e. g., Berman and Plemmons (1994), Giorgi and Magnani (1978),
Kemp and Kimura (1978), Murata (1977), Nikaido (1968, 1970), Pasinetti (1977), Takayama
(1985), Woods (1978). Here we shall be concerned only with some economic applications of the
S-class, the Sp-class and the S;-class. Some insights have been already given in the previous
section.

We consider a general linear economic model with joint production, described by two
nonnegative matrices:

e An inputs matrix A = [0], of order (m,n);

e An outputs matrix B = [0], of order (m,n).

Usually, due to the economic meaning of A and B, every column of A and B is required
to be semipositive:

Al >[0], B >[0], Vj=1,..,n.

35



Also every row of B is required to be semipositive:

This last assumption means that every good can be produced by some process (the model
is “complete”). See, e. g., Giorgi and Magnani (1978), Kemeny, Morgenstern and Thompson
(1956). The nonnegative column vector € R™ is the activity vector, therefore the quantities
Bz and Ax describe, respectively, the gross productions and the inter-industry consumes. The
row vector p' € R™ (usually p > [0] or also p > [0]) is the price vector. The vector y =
(B — A)x describes the net productions, obtained at the activity levels vector x, and the vector
v' = p"(B— A) describes the unitary net values, i. e. the values, at the price vector p, referred
to the activity vector z = e, with e = [1, 1, ..., 1]T )

The model is productive if there exists an activity vector x > [0] such that y is positive:

y=(B—A)x>|[0], z>[0] (equivalently: x > [0]).
The productivity of the model here considered is therefore equivalent to the property
(B—A)eS.
The model is profitable if there exists a price vector p > [0] such that v > [0] :
v =p"(B—A)>[0], p>10] (equivalently: p > [0]).
The profitability is therefore equivalent to the property
(B—A)eST

which means (B — A)" € S.

Unlike for the class of M-matrices (“closed” under transposition), we have to remark
that the two properties of productivity and profitability are compatible, but not independent
properties. In other words, the classes S and ST are not disjoint, but have only a partial
overlapping. Obviously, if A and B are square, of the same order n, and (B — A) € Z, then
productivity is just equivalent to profitability. In the general case we can formulate the following
“test” of productivity and profitability for a general linear production model, not necessarily
square, descriveb by the pair (A, B).

Theorem 15. Let A and B be, respectively, the inputs and the outputs matrix of an economic
linear model involving m commodities and n processes. Then:

i) The model (A, B) is productive if and only if, for any price vector p > [0], there exists
an activity (in general varying with the choice of p) such that the corresponding net value is
positive:

p>[0=3j:p"(B—- A >0
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i1) The model (A, B) is profitable if and only if, for any activity vector = > [0], there
exists a commodity (in general varying with the choice of x) such that the corresponding net
production is positive:
x>0 = Fi:(B—-A);x>0.

Proof. Thanks to the theorem of the alternative of Ville (see Section 5), (B — A) € S if and
only if [—(B — A)"] ¢ Sp. This means that the system

{ [—(B=A)T]p= 0]
p > [0]

i. e. the system
{ p'(B—A)=[0]
p > [0]

has a solution. Therefore i) is proved. In a symmetric way, (B — A) is profitable if and only if
(B—A)" € S, 1i. e., thanks to the same theorem of the alternative, if and only if [—(B — A] ¢ S;.
This means that the system

{ [—(B—A)]x 2 [0]

x> [0],

i. e. the system

{ (B —A)z = [0]

x > 0]
has no solution. Therefore i) is proved. O

Obviously, the practical relevance of the above tests relies on the possibility to detect
non productive models and non profitable models, rather than productive models or profitable
models.

If (B—A) € S, (B—A) not square, the number of processes is always less than the number
of commodities (n < m), thanks to Property 3.8 of Fiedler and Ptak (1966b). Moreover, if
the columns of (B — A) are linearly independent, then the pair (A, B) is profitable and quasi-

productive, i. e. the system
{ (B — Az > [0]

z 2 [0]

has a solution (see Giorgi and Magnani (1978)).

If A and B are square, of the same order n, (B — A) is nonsingular and (B — A) € S; (i.
e. the model is “all-engaging”: (B — A)~! > [0]), then, again productivity and profitability are
equivalent properties. If (B— A) € P, and hence also (B—A)" € P, then the linear production
model described by the pair (A, B) is both productive and profitable.
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