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Abstract

Turning points in financial markets are often characterized by changes in the direction and/or
magnitude of market movements with short-to-long term impacts on investors’ decisions. This
paper develops a Bayesian technique to turning point detection in financial equity markets.
We derive the interconnectedness among stock market returns from a piece-wise network vec-
tor autoregressive model. The empirical application examines turning points in global equity
market over the past two decades. We also compare the Covid-19 induced interconnectedness
with that of the global financial crisis in 2008 to identify similarities and the most central
market for spillover propagation.
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1. Introduction

The turn of events in major financial markets since late-February 2020, following the
spread of the novel coronavirus (COVID-19) from Wuhan, in China to a global pandemic,
is certainly a reminder of how increased interconnectedness between markets over time play
a substantial role in the contagion spreading, especially during turbulent times. As a con-
sequence, the degree of comovements in asset markets within and across countries increases
in presence of shocks, and shocks propagate to markets across countries and regions, with
corresponding impacts on asset prices/returns. A clear understanding of the nature of the
linkages and interconnectedness among markets is critical to understand potential contagion.
Modeling financial interconnectedness have received much attention, especially after the the
global financial crisis of 2007-2009, and the European sovereign debt crisis of 2010-2013
(see Ahelegbey et al., 2016b; Battiston et al., 2012; Billio et al., 2019, 2012; DasGupta and
Kaligounder, 2014; Diebold and Yilmaz, 2014; Hautsch et al., 2015).

In investigating the dynamic nature of interconnectedness among institutions and markets,
it has become necessary to build models that are flexible to allow also structural changes. For
instance, financial institutions are often interconnected through diverse channels, ranging from
inter-bank market transfers, direct deposits, relationship lending/borrowing, and exposures
to common risk or market factors. These connections can change with time. Turning points in
financial markets are often characterized by changes in direction and/or magnitude of market
movements with short-to-long term impacts on investors’ decisions. These turning points may
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occur as a result of changes in policy regimes, fluctuations in underlying market conditions
or changes in the financial health of counterparties, leading to widespread implications on
the economy and in financial markets. From a modeling perspective, changes in structural
relationships affect predictions, as the use of old data becomes counter-productive. However,
if the conditions associated with changes in financial markets are similar to past occurrences,
then such information can prove helpful by signalling the direction of market conditions. This
study contributes to a stream of research useful to identify turning points in multivariate time
series to better understand non-stationarity in time series observations (see Bai, 2000; Chib,
1998; Cho and Fryzlewicz, 2015; Pesaran et al., 2006; Qu and Perron, 2007; Ruggieri, 2013).

This paper contributes to the above discussion by advancing a Bayesian technique to
turning point detection in financial equity markets. We formalize the derivation of the in-
terconnectedness among stock market returns from a piece-wise vector autoregressive with
residual structural equations model (VAR-RSEM). That is, we model the dynamics of the
returns by a reduced-form VAR with the residuals as a system of structural equations. Fi-
nancial time series data usually exhibit contemporaneous dependencies as well as temporal
lag relationships over time. The VAR-RSEM specification is designed to account for the con-
temporaneous, serial, and cross-lagged dependencies beyond what simple stylized facts from
historical data can provide. Closely related models have in recent times been applied to infer
financial contagion networks (see Ahelegbey et al., 2016a,b; Barigozzi and Brownlees, 2019;
Basu and Michailidis, 2015; Bianchi et al., 2019; Billio et al., 2019, 2012; Diebold and Yil-
maz, 2014). In a typical moderate to large VAR model, there are often too many parameters
to estimate, compared to the available observations. A natural approach to overcome over-
parametrization is via variable selection to produce parsimonious and sparse VAR models.
The introduction of networks operationalized as graphical VAR models presents a convenient
framework to achieve parsimony while providing explainable interactions in multivariate time
series (Ahelegbey et al., 2016a).

The concept adopted in this paper places our contribution within the literature on detec-
tion of changes in multivariate time series and specifically to Bayesian turning point models
(Jochmann et al., 2010; Koop and Potter, 2007, 2009), turning point network models (Bar-
nett and Onnela, 2016; Grzegorczyk et al., 2011; Lebre et al., 2010; Xuan and Murphy, 2007),
high dimensional Bayesian models (Ahelegbey et al., 2016b; Gruber and West, 2017; Koop
et al., 2019), and the application of graphical models to cope with overffiting issues arising in
high dimensional models (see Ahelegbey et al., 2016a,b; Corander and Villani, 2006; Gruber
and West, 2017; Paci and Consonni, 2020). Although there has been substantial progress in
modeling non-homogeneous structure of dependence among random variables, scalability to
high dimensional models and large data problems remains an open issue. In this paper, we
adopt a specification closely related to the Bayesian turning point model of Jochmann et al.
(2010), the changing dependency structure of Xuan and Murphy (2007), and extension of the
Bayesian graphical VAR model of Ahelegbey et al. (2016a) to allow for structural changes.

Several techniques for estimating turning point locations have dominated the literature
on Bayesian solutions to multiple turning point problems. Prominent among such techniques
are the Markov chain Monte Carlo (MCMC) and Gibbs sampling algorithms (Barry and
Hartigan, 1993; Erdman and Emerson, 2008; Green, 1995; Western and Kleykamp, 2004)
and recursive dynamic programming algorithms (Fearnhead, 2006; Fearnhead and Liu, 2007;
Ruggieri, 2013). However, turning point estimation in high dimensional models characterized
by complex interactions and large datasets with many data time points present a number of

inferential and computational challenges. In such settings, standard MCMC-based techniques
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usually suffer from slow mixing and high computational cost per MCMC iteration. We there-
fore adopt a modified version of the Bayesian sequential turning point algorithm of Ruggieri
and Antonellis (2016), that employs a recursive dynamic programming scheme for multiple
turning point detection problems. This scheme proves to be very effective in inferring the
number and timing of the turning points, reducing the computational burden of the inference
problem, especially when dealing with large data sets.

We apply our proposed model to study the equities market by considering the 15 major
stock market indices, including G10 countries. The dataset consists of daily prices from
Bloomberg, covering January 2000 to October 2020. The empirical application examines:
1) the turning points in the global equity market; and 2) compares the Covid-19 induced
interconnectedness with that of the global financial crisis, to identify similarities and the
most central market for spillover propagation.

The paper is organized as follows: Section 2 presents the piece-wise network VAR model
and discuss the Bayesian estimation. Section 3 presents a description of the data and report
the results in Section 4. Section 5 concludes the paper.

2. A Bayesian Graphical Piece-Wise Vector Autoregression

2.1. Piece-Wise VAR Model

Let Y; = (Y14,...,Ynt) be n-variable vector of return observations at time ¢, where Y;; is
the time series of market-i at time ¢. Suppose there exist k£ turning points at 1 = 79 < 7 <
Ty < ... < T < Tpr1 = 1. We represent the dynamics of Y; as piece-wise stationary vector
autoregressive (VAR) model of order p given by

p
Y; =Y B I(t <t*) Yi—s+ Uy (1)

s=1

U; = By I(t<t*) Ui + ¢4 (2)

where p is the lag order, t* € [f;_1, 7], for [ = 1,...,k 4+ 1, B, is n X n matrix of coefficients
with B;;|, measuring the effect of Y;; s on Y;;, I(a) denotes the indicator function that takes
value 1 if a is true and 0 otherwise, Uy is a vector independent and identically normal residuals
with covariance matrix ¥, By is a zero diagonal matrix that records the contemporaneous
effect of shocks, and &; is a vector of orthogonalized disturbances with covariance matrix ..
From (2), the ¥, can be expressed in terms of By and X, as

Sy = (I—Bo)™ 'S.(I - By)™" (3)

2.2. Network Models

Following Ahelegbey et al. (2016a), equation (1) can be operationalize a network model,
where the variables in Y are defined by nodes joined by a set of links, describing the statistical
relationships between a pair of variables. The introduction of networks in VAR models helps to
interpret the serial, temporal and contemporaneous relationships in a multivariate time series.
To analyze (1) and (2) through networks, we assign to each coefficient in By a corresponding
latent indicator in G5 € {0,1}"*™, such that for i,5 =1,...,n,and s =0,1,...,p:

B — 0 if G’L]‘S:O — }/Y]',tfs 7L> }/i,t (4)
ijls Biy e R if Gy =1 = Yjis = Yy
3



where Yj; s / Y;; means that Y; does not influence Y; at lag s, including s = 0, which
correspond to contemporaneous dependence.

Let B* =YP_( Byand G* = Y¥_, Gi. Following (4), we define two zero diagonal matrices
A€ {0,1}™™ and A" € R™™ ", whose ij-th element is given by:
0, if Gy, =0 0 if Bf, =0
.= ) sJ ’LU — ’ ,J
Ay { 1, otherwise ’ Aij { B}, otherwise (5)

where A;; specifies that Y; — Y exist if there is a contemporaneous or lagged directed link
from Y; to Y;. A}; specifies the weights of such a relationship obtained as a sum of the
estimated contemporaneous and lagged coefficients. The correspondence between (G, B) and
(A, A") is such that the former captures the short-run dynamics in Y; while the latter can
be viewed as long-term direct relationships when Y; = Y;_; = ... = Y;_,,. Defining a sparse
structure on (G, B) induces parsimony of the short-run model and sparsity on the long-run
relationship matrices (A4, AY).

2.8. Bayesian Estimation of A Piece-Wise Network VAR

Following standard application, we select the appropriate lag order of the VAR via a
Bayesian information criterion (BIC). Thus, the parameters left to estimate in a piece-
wise network VAR are (k,V; i, Gk, Bi:k, Xe,1:6), where k is the number of turning points,
Vig = (11,72,...,7%) is the the turning point locations, G, = (GO, ..., GE+D} is the
collection of network graphs over the segments, By = {B(l), ey B(k+1)} is the collection
coefficient matrices over the segments, and ¥, 1., = {29), el Egkﬂ)} is the collection of error
covariance matrices over segments. Estimating these parameters jointly is a challenging prob-
lem and a computationally intensive exercise. We complete the Bayesian formulation with

prior specification and posterior approximations to draw inference on the model parameters.

2.8.1. Prior Specification
We specify the prior distributions over (k, V; i, G1.k, B1:k, Xe1:k) as follows:

ke ~ U0, kmax), Vs ~UL,T), [B|Gy; = 1] ~ N(0, ),
Gy ~ Ber(m;), 210 (s, Ao)
where Kmax, 7, m;j, 0, and Ag are hyper-parameters.
The specification for k is a discrete uniform prior on the set {0, ..., knax}, with density
1
P(k) = ml{ke[o,kmax]} (6)

The choice of the discrete uniform prior is relatively non-controversial since it is similar to
the truncated Poisson in (Grzegorczyk et al., 2011; Nobile and Fearnside, 2007).

We consider 71, ..., 7 as order statistics and define d, = 7, — 7;_1 as the distance between
successive turning points. We consider V; j to be uniformly distributed on [1,7] with density

1 T
P(Vklk) = N Ni, = (;) (7)



where Ty = T — dr, 7o = 1 and 741 = T, N}, is a normalizing constant and (;) denotes a
binomial coefficient indexed by a and b. The motivation for this prior is to discourage short
segments and to encourage a priori an equal spacing of the turning points. Also it shows that
close observations are likely to belong to the same segment.

The specification for B;; conditional on G;; follows a normal distribution with zero mean
and variance n. Thus, relevant explanatory variables that predict a response variable must
be associated with coefficients different from zero and the rest (representing not-relevant
variables) are restricted to zero. We consider G;; as Bernoulli distributed with m;; as the
prior probability. We assume Y- ! is Wishart distributed with prior expectation %Ao and
6 > n the degrees of freedom parameter.

2.8.2. Posterior Approximation

Let Z; = (Y/,Y/_q,...,Y{,)" be a vector of contemporaneous and lagged observations,
and denote with Z1., = (Z1,...,Zy) be an h x m collection of Z; over a window of length h,
where m = n(p + 1). For some lag order p, and under the assumption that Zy.;, ~ N (0,%),
the likelihood function is given by

P(Z14]Z) = (2n)~%" |52 etr( »13) (8)

where etr(+) is the exponential of the standard trace function, S is the sample sum of squared
matrix of dimension m. It can be shown that ¥ contains the structural parameters (B, X.).
Under the assumption that ¥ is inverse-Wishart distributed, P(3) ~ ZW(v, A), with prior
expectation %A and v > m degrees of freedom, we follow the Bayesian framework of Geiger
and Heckerman (2002) to integrate out the structural parameters analytically, thus, obtaining
a marginal likelihood function given by

m‘é
>

my vihtl—i
P(Z|h) = ((W) ”S“V(Z-i-h) H <<y+1 Z))EQ(V—HL) (9)

where = = (A + 5)/(v + h) is the posterior covariance matrix. Clearly, we can notice that
h controls the window size which is related to the turning point locations. From the above
representation, we notice that except for ¥ whose computation depends on the observed data,
the rest can be pre-computed for different values of h, 1 < h < T with v = m + 2.

This allows us to apply an efficient sampling algorithm to sample the model parameters
in blocks. The algorithm proceeds as follows:

1. Sample [k, V;;|Y, p] following Ruggieri and Antonellis (2016) by
(a) Sample k£ from the marginal distribution: [k|Y]
(b) Recursively sample V. ;, from the conditional distribution: [V, y|k,Y]
2. Sample [Go, Gl:fn Bo, Bl:ﬁ, ESD/, ]3, k, Vr,k] by
(a) Sample via a Metropolis-within-Gibbs [Go, G1.5|Y, D, k, V- i] by
i. Sampling from the marginal distribution: [G1.5|Y,D,k, V7 k]
ii. Sampling from the conditional distribution: [Go|Y, p, G1.5, k, V> ]
(b) Sample from [By, By.p, Xc|Y, Go, @Lﬁ,ﬁ, k,V: k] by iterating the following steps:



i. Sample [B; 11,5V, élzﬁ,éo,Bo,Es] ~ N(Bz‘,m\lzﬁa D,,) where

A

Bi,m\l:ﬁ = Uzszﬂ'zZ;rl}/;? D’]T' = (n_lldz + O-'L:fZ’;rZZﬂ'z)_l (10)

(3

A

where Z,, € Z corresponds to (Gyi,zw‘liﬁ =1), 072“ is the i-th diagonal element
of £y = (I — By)™'S.(I — By)~", and d, is the number of covariates in Zy,.
ii. Sample [Bi,m-|0’Y7 Go, Gl;ﬁ, Bl;ﬁ, 26] ~ N(Bi,mm? Qm) Where

B; nijo = 027 QUL Us, Qr, = (0 'Ia, + 027U, Ux) ! (11)

where U =Y — Z Bi:ﬁ, (A]m. e U_; is the contemporaneous predictors of U; that

A

corresponds to (G, .10 = 1), and dy, is the number of covariates in U,
iii. Sample [Y-1Y, G5, Go, Bip, Bo] ~ W(6 + N, Ay) where

Ay = Ao+ (U = UBY (U - UBY) (12)
A detailed description on how to sample the parameters is available in Appendix A.

3. Data Description

Our study makes use of daily data from Bloomberg, covering between January 2000 to
October 2020, and includes 15 major stock market indices, including all G10 economies. We
consider only one index per country, which typically contains the stock prices of the largest
companies listed in the nation’s largest stock exchange. The countries can be grouped into
three regions: the Americas (Brazil, Canada, and the United States), Asia-Pacific (Australia,
China, Hong Kong, India, Japan, and South Korea), and Europe (France, Germany, Italy,
Russia, Spain, and the United Kingdom). A description of the market indices chosen for the
selected countries is presented in Table 1.

Region No. Country Code Description Index
Americas 1 Brazil BR Brazil Bovespa IBOV

2 Canada CA Canada TSX Comp. SPTSX

3 United States US United States S&P 500 SPX
Asia-Pacific 4 Australia AU Australia ASX 200 AS51

5 China CN China SSE Comp. SHCOMP

6 Hong Kong HK Hong Kong Hang Seng  HSI

7 India IN India BSE Sensex SENSEX

8 Japan JP Japan Nikkei 225 NKY

9 Korea KR South Korean KOSPI KOSPI
Europe 10 France FR France CAC 40 CAC

11 Germany DE Germany DAX 30 DAX

12 Ttaly 1T Italy FTSE MIB FTSEMIB

13 Russia RU Russia MOEX IMOEX

14 Spain ES Spain IBEX 35 IBEX

15 United Kingdom UK UK FTSE 100 UKX

Table 1: Description of stock market indices of countries classified according to regions.



We report in Figure 1 the daily series of closing prices on a logarithmic scale. We scale the
prices to a zero mean and unit variance and add the absolute minimum value of each series to
avoid negative outcomes. This standardizes the scale of measurement for the different series.
The figure shows that over the past two decades, global financial markets have experienced

— BR— AU— IN — FR—— RU
— CA

CN— JP — DE

— US— HK

KR— IT

ES
UK

T T T T
Jan 2000 Jan 2003

T T T
Jan 2006

T T T
Jan 2009

Jan 2012 Jan 2015

Jan 2018

T T
Oct 2020

Figure 1: Daily closed prices of major stock market indices (January 3, 2000 — October 30, 2020).

several catastrophic events within and across different markets. Among these events is 1)
the dotcom “tech” induced crisis of 2000-2003 which was fuelled by the adoption of the
internet in the late 1990s, triggering inflated stock prices that gradually went downhill and
disrupted global market operations; 2) the global financial crisis of 2007-2009 which was
triggered by the massive defaults of sub-prime borrowers in the US mortgage market; 3) the
European sovereign debt crisis of 2010-2013 which emanated from the inability of a cluster
of EU member states to repay or refinance their sovereign debt and bailout heavily leveraged
financial institutions without recourse to third party assistance; and 4) the distress to world
economy and global financial markets caused by the novel coronavirus pandemic in 2020.

Country Code Min Max Mean SD Skew Ex.Kurt
Brazil BR -15.993 28.824 0.047 1.861 0.318 16.057
Canada CA -13.176 11.295 0.016 1.124 -0.898 16.780
United States UsS -12.765 10.957 0.018 1.244 -0.362 10.849
Australia AU -10.203 6.766 0.014 1.014 -0.707 8.524
China CN -9.256 9.401 0.019 1.528 -0.271 5.324
Hong Kong HK -13.582 13.407 0.016 1.446 -0.087 7.600
India IN -14.102 15.990 0.046 1.471 -0.247 9.155
Japan JP -12.111 13.235 0.009 1.450 -0.358 6.699
Korea KR -12.805 11.284 0.025 1.529 -0.456 6.451
France FR -13.098 10.595 0.003 1.437 -0.213 6.174
Germany DE -13.055 10.797 0.015 1.484 -0.163 5.652
Ttaly IT -18.541 10.874 -0.012 1.530 -0.570 8.949
Russia RU -20.657 25.226 0.073 2.066 -0.063 14.146
Spain ES -15.151 13.484 -0.008 1.466 -0.309 7.796
United Kingdom UK -11.512 9.384 -0.001 1.191 -0.329 7.697

Table 2: Statistics of daily returns for stock market indices over the sample period.

We compute daily returns as the log differences of successive daily closing prices, that is,
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Yi: =100 (log C; s — log Ci¢—1), with C;; the daily closing price of market i on trading day ¢.
Table 2 reports a set of summary statistics for the index returns over the sample period. The
table shows that almost all index returns have a near-zero mean and a relatively high standard
deviation. The highest standard deviations, indicating individual market volatilities, are those
of the emerging markets of Russia and Brazil. Almost all the return indices exhibit fairly
symmetric behaviour, i.e., they are characterized mostly by small but consistent positive gains
and, occasionally, large negative returns. The excess kurtosis varies between 5.32 (China) and
16.78 (Canada), which confirms the stylized facts of leptokurtic behavior of daily return series.

4. Empirical Findings

We begin by studying the turning points in the equity market interconnectedness over
the sample period. We characterize the dynamics of the connectedness via a yearly rolling
windows of 240 trading days. We monitor the daily changes in the interconnectedness by
setting the increments between successive rolling windows to one day. Thus, we set the first
window of our study from January 28, 1999, to January 3, 2000, followed by January 29,
1999, to January 4, 2000; the last window is from November 21, 2019, to October 30, 2020.
In total, we consider 5318 rolling windows. We select the appropriate lag of the VAR via a
Bayesian information criterion (BIC) for different lag orders (p € {1,...,7}). The optimal
lag order according minimum BIC score is p = 1.

We report in Figure 2 the plot of rolling-window Net-Density and the posterior probability
of a turning point for each day between January 3, 2000 to October 30, 2020. The figure shows

— 1.0
= Net.Density = __Prob of Turning.Point W‘
60 — i j — 0.8
] | i ~ 0.6
50 i |
/] | » "
7 ] - 0.4
ol (M | |
| | | | — 0.2
‘ | | |
30 | I | I
T T

I I I I I I I I I
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure 2: A rolling-window Net-Density and Posterior probability of turning points.

that the network density of the COVID-19 period is much greater than any period of market
crisis in the last 20 years, and this include the period of the dotcom “tech” induced crisis of
20002003, the global financial crisis (GFC) of 2007-2009, and the European sovereign debt
crisis of 2010-2013. The spike in the network density after February 2020 is typified by the
fear and panic that greeted the global financial market, and thus, intensifying sell-off of assets.
The increased interconnectedness during the pandemic beyond the level recorded during the
GFC suggest stronger evidence of contagion in the coronavirus pandemic than during the
financial and eurozone crisis.



4.1. Turning Points in Global Equity Markets

For clarity, we extract the turning point dates, as they emerge from Figure 2. Table 3
lists the turning point dates with their posterior probabilities and possible financial market
events that characterize the identified dates.

Dates Probability Financial Market Event

1 11/09/2001 0.967 September 11 Effect

2 01/10/2001 0.997 Turn-around in Financial markets

3 08/07/2003 0.706 Turn-around after SARS induced crisis

4 23/07/2007 0.528 Panic in the asset-backed commercial paper market

5 15/09/2008 0.896 Bankruptcy of Lehman Brothers

6 06/11/2008 0.976 IMF prediction of deep recession

7 07/07/2009 0.945 End of the great recession

8 12/07/2016 0.584 Rising oil prices and Aftermath of Brexit

9 21/02/2020 0.999 Beginning of Covid-19 induced global stock market crash
10 08/04/2020 0.921 End of Covid-19 induced global stock market crash

Table 3: Turning point dates with their posterior probabilities and possible financial market events.

The first turning point (event #1) in financial market over the past two decade is the
September 11, 2001 attack that led to one of the largest single-day point decline in major
markets. This was followed by a turn-around in at the beginning of October 2001 (event #2).

The timeline of the Severe Acute Respiratory Syndrome (SARS) outbreak shows that the
illness first appeared in Guangdong Province, China in November 2002 and spread to 37 coun-
tries. This affected the Asian financial market and began to affect stock market integration
around early 2003. The World Health Organisation (WHO) database shows that the SARS
infection period was from 16/11/2002 — 05/07/2003 (see World Health Organization, 2003).
Thus, the third turning point (event #3) captures the turn-around in financial market as a
result of WHO’s declaration that SARS outbreaks have been contained worldwide.

The fourth turning point (event #4) marks the contraction in the asset-backed commercial
paper (ABCP) market that began in late July 2007, which triggered fears and panic across
the financial market. As documented by Covitz et al. (2013) and in Financial Crisis Inquiry
Commission (2011), the collapse of the ABCP market played a central role in transforming
concerns about the credit quality of mortgage-related assets into a global financial crisis. Early
July 2007 also experienced the collapse of two Bear Stearns hedge funds that had speculated
heavily in mortgage-backed securities.

The fifth turning point (event #5) marks September 15, 2008 when stock markets ex-
perienced the worst sell-off in the last 20 years. It was a Monday that followed a weekend
turmoil of triple trouble. That is, Lehman Brothers (the fourth-largest U.S. investment bank
at the time) filed for Chapter 11 bankruptcy protection; Merrill Lynch was acquired by Bank
of America; and the American International Group (AIG - the world’s largest insurance com-
pany) presented an unprecedented request for short-term financing from the Federal Reserve.
According to the Financial Crisis Inquiry Commission (2011), the risk exposures of AIG are
concentrated among the largest international banks (both US and European) across a wide
array of product types (bank lines, derivatives, securities lending, etc.). Thus, AIG’s fail-
ure could trigger significant counterparty losses to these firms. The fears and panic across
financial markets led to increased interconnectedness which amplified the shocks, affecting a
broader aspect of the US financial system and many other correlated markets and economies.
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By the end of October 2008, many advanced economies like the US, Europe and Japan
were already facing their deepest recession since the 1930s. With the global financial market
in turmoil, producers and consumers were losing confidence in the financial system. As
documented in the World Economic Outlook report published on November 6th 2008 (see
IMF, 2008), the IMF predicted a worldwide “deep recession” in 2009 following the deteriorated
global growth of world GDP over the past month. This forecast coupled with financial
conditions continued to present serious downside risks, pushing the world over the edge with
reaction across major stock markets. Thus, the sixth turning point (event #6) marks the
date of the IMF prediction with its effect on the global equity market.

The seventh turning point (event #7) identifies July 7th 2009 as the day that marks
the beginning of global economy recovery from the great recession. In its World Economic
Outlook report published on July 8th 2009 (see IMF, 2009), the IMF projected receding
contractionary forces with a positive but weak recovery between 2009-2010.

Rising crude oil prices in July 2016 affected oil producing countries as well oil dependent
nations, sending market participants worried about the possible impact of rising crude oil
prices on global stock market activities. The period also coincides with the aftermath of the
Brexit which saw Britain voting to exit the EU in June 2016. The uncertainty surrounding
the Brexit had significant effect on many investors thereby altering financial market activities
across the globe. The failure of the Bank of England to ease the shocks that followed the
Brexit vote also contribute to a mild turning point (i.e. event #8).

Discussions of the first Coronavirus case dates back to mid-November 2019. A global
pandemic was triggered when the severity and scale of the impact of the novel coronavirus
led to what can be best described as “hibernation” of world activities, i.e., a temporary sleep
or “artificial coma”. February 21st 2020 (event #9) marked the day Covid-19 outbreak began
to affect Europe and the U.S., plunging many stock markets into turmoil. Despite its impact,
the GFC is incomparable to the Covid-19 outbreak in terms of the scale and magnitude of
its effects. The uncertainty at the onset of latter was accompanied by the existential threat
from which many markets may not recover in the sense that it could cripple if not wipe out
nations and economies completely. This assertion is evidence by the fact that it recorded the
fastest fall in global stock markets (see Figure 1). Unlike any of the past crises, within just a
month of reported coronavirus cases in Europe and the US, major national indices began to
record their worst ever historical prices in history.

The last turning point (event #10) mark the beginning of financial market recovery from
the Covid-19 outbreak. Although, the global stock market is in a recovery phase, major world
economies are currently in a recession or depression.

4.2. Dynamic Interconnectedness In Global Equity Markets

We analyze the dynamic nature of the interconnectedness among the major stock markets
to assess which markets over the past two decades. Using the turning point dates, we divide
the sample into four sub-periods of tranquil and turbulent times: (03/01/2000 — 12/09/2008),
(15/09/2008 — 06/07/2009), (07/07/2009 — 20/02/2020) and (21/02/2020 — 30/10/2020). We
report in Figure 3 the network topology over the sub-periods. Each network is represented
with color-coded links and nodes. Red-links indicate negative weights and green-links denote
positive weights. Red-color nodes represent American markets, blue-nodes for FEuropean
markets, and green-nodes for markets in Asia-Pacific countries. The size of the nodes is
proportional to their hub scores.
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(a) 03/01/2000 — 12/09/2008 (b) 15/09/2008 — 06,/07,/2009

(c) 07/07/2009 — 20/02/2020 (d) 21/02/2020 — 30/10,/2020

Figure 3: Sub-period Interconnectedness. Red nodes represent America markets, blue for European, and green
for Asia-Pacific. The size of the nodes are weighted out-degree. Red links denote negative effects and green
for positive interactions. The node position is based on eigendecomposition of the networks.

The figure provides strong evidence of clustering among the markets. More importantly,
the Asian-Pacific markets (green-nodes) seem to move together, likewise, the European mar-
kets (blue-nodes) due to similarities in underlying market conditions. The US, however,
appears separated from the others most of the time, as the rest of the American markets
(red-nodes) are usually closer to the European ones. We notice that the US is usually the
biggest sized node and strongly positively connected to the rest of the markets. Based on
the node sizes, the US appears to be the most influential in almost all the sub-periods except
21/02/2020 - 30/10/2020, where Japan seems to dominate.

We compare the sub-period networks in terms of average degree, density, clustering coef-
ficient, and average path length (see Appendix B for a description of these network statistical
metrics). Table 4 shows that network statistics extracted for the four sub-period connectiv-
ity structures. We notice that two sub-periods record tranquil (non-crisis) conditions (i.e.,
03/01/2000 — 12/09/2008 and 07/07/2009 — 20/02/2020), while the other two (15/09/2008
—06/07/2009, and 21/02/2020 — 30/10/2020) experienced stressful conditions. The tranquil
periods are characterized by relatively low average degree of interconnectedness, lowe density
and clustering index, and a relatively high average path length. This suggests a lower degree
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No. Date Interval Average Degree Density Clustering Average Path

Coefficient Length
1 03,/01,/2000 — 12/09/2008 4.000 28.571 0.597 1.903
2 15/09/2008 — 06/07/2009 8.133 58.095 0.760 1.419
3 07/07/2009 — 20/02/2020 4.133 29.524 0.532 2.171
4 21/02/2020 — 30/10/2020 8.800 62.857 0.824 1.371

Table 4: The network statistics for sub-period interconnectedness graphs.

of equity market integration before and after the global financial crisis. It also shows that in
the event a shock to a major market or a group of major markets, these shocks will take a
much longer time to propagate to other markets to cause a systemic breakdown.

The turbulent periods, on the other hand, are characterized by relatively high average
degree of interconnectedness, high density and clustering index, and a relatively low average
path length. The lower average path length shows that it takes a relatively shorter time
for a shock to a major market or a group of major markets to propagate to other markets,
leading to a systemic breakdown. The network statistics of 15/09/2008 — 06/07/2009 and
21/02/2020 — 30/10/2020 periods shows that stock market integration during the GFC is
strikingly similar to the behavior exhibited most recently at the height of the Coronavirus
pandemic in 2020. More importantly, the spikes in the network density at onset of both crisis
periods (see Figure 2) indicate elevated levels of unusualness in stock markets with a rise in
volatility and market co-movements.

4.3. Global Financial Crisis vs Covid-19 Outbreak

We compare the interconnectedness of markets during the GFC and the Covid-19 out-
break. For this comparison, we extract the intersection and differences between the networks.
Figure 4 presents the similarity and difference between the structure of interconnectedness
during the GFC and Covid-19 sub-periods. Figure 4(a) depicts the network links during the
GFC but not in the Covid-19 period. Figure 4(b) display the network links common to both
periods, and Figure 4(c) shows only links in the Covid-19 period but not present during the
GFC. Overall, we found 77 common connections between both networks. The GFC recorded
44 extra links that not present in the Covid-19 network, and the latter also report 54 new
connections that was not in existence during the financial crisis. Surprisingly, majority of the
new stock market connections center around Japan, Germany and India, whereas the GFC
period centered around the US.

We now turn our attention to assess and compare the most critical (or central) market to
during what appears to be the two most severe equity market crisis over the last two decades.
Table 5 reports the summary of the centrality ranking of the most influential markets over the
two crisis sub-periods. The table shows the top three transmitters of spillover propagation
during the GFC are the US, UK and France, while the top three receivers of shocks during
the period were Canada, Germany and France. During the Covid-19 outbreak, this most
central markets for transmitting shocks are Japan, India and the US, while Japan, Australia,
and Russia ranks high at the receiving end of shocks. Thus, not only has the structure of the
nature of interconnectedness changed over the two crisis, but the most central markets for
spillover propagation has also changed in recent times.
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(a) GFC' N COVID® (# 44) (b) GFC N COVID (# 77) (c) GFC® N COVID (# 54)

Figure 4: Comparing the Global Financial Crisis (GFC) and Covid-19 outbreak Network. Red nodes represent
America markets, blue for European, and green for Asia-Pacific. The size of the nodes are weighted out-degree.
Red links denote negative effects and green for positive interactions. The number in parenthesis signifies the
total links in each network. Note: A° - Complement of A.

Rank GFC (2008-2009) COVID (2020)
Hub Auth Hub Auth
1 S (0.798 ) (0.383) (0.432) (0.346 )
2 K (0.265 ) (0.359) (0.412) (0.308 )
3 R (0.256 ) (0.328) (0.346 ) (0.283)
4 R (0.249 ) (0.319) (0.331) (0.280 )
5 A (0.228) (0.292) (0.288 ) (0.279)
6 T (0.182) (0.281) (0.283) (0.272)
7 R (0.161) (0.252) (0.275 ) (0.263)
8 K (0.101) K (0.238) R (0.228) K (0.252)
9 P ( 0.098 ) (0.235) (0.190 ) (0.251)
10 E (0.097) (0.221) (0.146 ) (0.246 )
11 U (0.092) (0.208 ) (0.134) (10.240 )
12 IN (0.074 ) (0.190 ) (0.127) (0.222)
13 RU ( 0.068 ) (0.157) (0.124) (0.209)
14 ES (0.063 ) (0.133) (0.119) (0.187)
15 CN ( 0.049) (0.068 ) (0.040 ) (0.182)

Table 5: Centrality ranking during Global Financial Crisis and Covid-19 Pandemic.

5. Conclusion

This paper studies the nature of turning point in financial equity markets. We propose a
Bayesian technique for turning point detection in a piece-wise network vector autoregressive
model that approximates the interconnectedness among stock market returns. The empirical
application examines turning points in global equity market over the past two decades. We
also compare the Covid-19 induced interconnectedness with that of the global financial crisis
to identify similarities and the most central markets for spillover propagation.

Our proposed approach proves to be effective in identifying financial market turning points
in relevant periods, like the September 11 attack of 2001, the turn-around after SARS induced
crisis in 2003, the panic in the asset-backed commercial paper market in 2007, the Bankruptcy
of Lehman Brothers in 2008, the beginning and the end of the 2008-2009 great recession,
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the rising oil prices and aftermath of Brexit in 2016, and the beginning and end of Covid-19
induced global stock market crash in 2020. We document a significant change in the structure
of stock market integration during the global financial crisis and the Covid-19 outbreak. The
result shows that the Covid-19 induced market interconnections record the highest density,
suggesting stronger evidence of spillovers and contagion in the Covid-19 outbreak than during
the global financial crisis.
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Appendix A. Details of Sampling Approach of the Parameters

This section provides a detailed description of the sampling approach of the parameters.

Appendiz A.1. Sampling Number of Turning Points
Using Bayes rule, the posterior distribution on the number of turning points is given as:

P(K = k)P(Vox|K = k)P(Z|K =k, V)

P(K =k|Z) = P(2)
1 1 P(Z|K =k, V,})
— — : Al
kmax + 1 Nk P(Z) ( )
where P(Z)=Y_Y P(Z|K =k,V.)P(K =k, V;}) (A.2)
K V‘r,k
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For t = 1,...,T, we denote with Wy (1,h) = P(Z1.,|K = k,V;}), the density of Z;.,, with
k > 0 turning points defined by

U(1,h) =Y V1 (1, ) P(Ziian) (A.3)
t<h

for h = (d-+1),...,T, where the above density for k = 0 is initialized by ¥o(1, h) = P(Z1.3),
and dr = 77 — 1;_1 is the distance between two successive turning points.

Appendiz A.2. Sample Turning Point Locations

Following the process of filtering recursion (see Fearnhead, 2006; Ruggieri, 2013), the
posterior distribution of the first turning point is given by

Uo(1,8) P(Zsy1.1)

P(r=s|Z)= A4
( ' | ) ZS<T \110(173) P(Zs+1:T) ( )
and the posterior distribution of the first turning point is given by
Wi 1(Z1.4) P(Ziq.
P(ry = tir, 2) = —et ) Pt (A5)

Z ‘I’k—l(let) P(Zt+157k+l)
telk—1,7%41)

Appendiz A.3. Sampling The Network

Let Vi, = (s, ...,yn) be the vector of indices of response variables, and V, = (21,..., znp)
the indices of the lagged observations. The network relationship from zy € V. to y; € Vj,
can be represented by (Gy, ., = 1). Following Geiger and Heckerman (2002), the closed-form
expression of the local marginal likelihood is given by

_1lN %Vo vo+N—ng VAR I v,
n g D )(V¢¢+V0nv|>2 (A5)

PY|Gy,z,) = o r(esme) \[X/X; + voly, |
where I'(-) is the gamma function, X; = (Y;, Zy), 14 is a d-dimensional identity matrix, n, is
the number of covariates in Zy, n, = ny + 1, vg > n; is a degree of freedom hyper-parameter
of the prior precision matrix of (Y, Z2), and v, = 1y + N. Equation (A.6) indicates that only
the ratio of the posterior sum of squares depend on the data. Thus, we reduce computational
time by pre-computing the part of (A.6) that is independent of the data, for different values
of n, € [1,m] and for fixed vy = m + 2 and N. We also pre-compute the posterior of the full
sum of squares matrix and extract the sub-matrices that relates to {Z,} and {(Y;, Zy)}. For
computational details of the score function (see Ahelegbey et al., 2016a). See Algorithms 1
and 2 for a pseudo code of the lagged and contemporaneous network sampling steps.

For our empirical application, we set the hyper-parameters as follows: m;; = 0.5 (which
leads to a uniform prior on the graph space), n = 100,d = n + 2 and Ag = 01,. We set the
number of MCMUC iterations to sample 50,000 graphs and we ensured that the convergence
and mixing of the MCMC chains are tested via the potential scale reduction factor (PSRF)
of Gelman and Rubin (1992).
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Algorithm 1 Sampling [G1.5|Y, p]
1: Require: Set of responses Vy, = (vs,...,yn) and lagged attributes V. = (z1,..., 2pp)
2: Initialize G =0

3: for y; €V, do
4: for z; €V, do

5: Compute ¢, = P(Y!Gy V)\lp) and ¢y = (Y|G$?Zj|1:ﬁ)

6: if ¢ > ¢4 then G | =1 else GI | =0

7: for h = 2 to Total iterations do

8: for y; € V,, set G; \)1p G; \1p) do

9: Randomly draw zj ~

10: Add/remove link from 2 to y;: G; )Zk‘l =1 gj;kl')l 5

11: Compute ¢ = exp [ log P(Y]Gy |1p) log P(Y|Gy \110) ]. Draw u ~ U(0,1).
12: if uw <min{l,¢} then G;}Z\)l 5= GL ‘)1 . else G(h|) = G?(ﬁilﬁ)

Algorithm 2 Sampling [Go|Y, G1.5, ]
1: Require: Set of attributes Vj, = (v, ..., yn) and estimated lag network Glzﬁ
2: Initialize G = () and G( ) = [G(()l)v Gl:ﬁ]
3: for y; €V, do
4: Set Vyl V\{yz} and {Zﬂ' . ywzw‘lp 1}

5 for y; €V, do

6: Set m; = (y; U zr). Compute ¢, = P(Y\Gy 20 ) and ¢ = (Y‘Gyz,mlﬂ 5
7 if ¢p > ¢, then G’é )ﬂ 0 = =1 else G; )zﬁ|0p 1

8: for h = 2 to Total iterations do

9: for y;, € V,, set Gg(jfo-ﬁ G?(j ‘Op) do

10: Randomly draw g ~

11: Add/remove link from Y to y;: Gz(/ )ykIOP =1- Gi/];;,j\)&ﬁ

12: Compute ¢ = exp [ log P(Y’szp) log P(Y|Gl|f8 pl)) |. Draw u ~ U(0,1).
13: if u <min{l,¢} then G(h‘)op G;*‘)O . else G(h|) = Géﬁa}ﬁ)

Appendix B. Network Statistics

Average Degree

Average degree is simply the average number of edges per node in the graph. It can be
computed numerically as: Average Degree = Total Edges/Total Nodes.

Network Density

Let A be an n-node graph without self-loop. We characterize (through numerical sum-
maries) the time-varying nature of interconnections by monitoring the network density: Net-
work Density = Total Edges/n(n — 1).
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Clustering Coefficient

Network clustering index is a measure of the tendency for nodes in a network form clus-
ters or triangles. We apply the global clustering index of Barrat and Weigt (2000) which
corresponds to the social network concept of transitivity and can be captured numerically as:

3 x (number of triangles)

cC =

B.1
(number of open triads) (B.1)

where open triads are defined as a connected sub-graph consisting of three nodes and two
edges. The index takes values between 0 and 1. It can be viewed as the probability of two
neighbors of a node link to each other.

Average Path Length

The average path length is the average number of steps along the shortest paths for all
possible pairs of network nodes. The average path length for a network with n-nodes is

1
APL = ——= ) d;; B.2
TL(TL o 1) ; 5] ( )

where d; ; is the shortest path between the nodes 7 and j.

Node Centrality

Node centrality in networks addresses the questions of how important a node/variable is
in the network. Commonly discussed centrality measures include in-degree (number of in-
bounds links), out-degree (number of out-bound links), authority, and hub scores. Let A" be
an n-node weighted graph without self-loop.

1. The authority score of node-i is a weighted sum of the power/hub score of the vertices
with directed links towards node-i. They can be obtained via absolute value of the
eigenvectors associated with the largest eigenvalue of (AwAw'). An authority node has
a large in-degree.

2. The hub score of node-j is the weighted sum of the power/authority score of vertices
with a directed link from node-j. They can be obtained via absolute value of the
eigenvectors associated with the largest eigenvalue of (Aw/Aw). A hub node usually has
a large out-degree.

From a financial viewpoint, nodes with high authority scores/in-degree are highly influenced
by others, while high hub scores/out-degree nodes are the influencers.
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