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Abstract

Current understanding holds that financial contagion is driven mainly by system-wide in-
terconnectedness of institutions. A distinction has been made between systematic and id-
iosyncratic channels of contagion, with shocks transmitted through the latter expected to be
substantially more likely to lead to a crisis than through the former. Idiosyncratic connectiv-
ity is thought to be driven not simply by obviously shared characteristics among institutions,
but more by the latent strategic position of firms in financial markets. We propose a Bayesian
hierarchical model for multivariate financial time series that characterizes the interdependence
in the idiosyncratic factors of a VAR model via a covariance graphical model whose structure
is modeled through a latent position model. We develop an efficient algorithm that samples
the network of the idiosyncratic factors and the latent positions underlying the network. We
examine the dynamic volatility network and latent positions among 150 publicly listed institu-
tions across the United States and Europe and how they contribute to systemic vulnerabilities
and risk transmission.

Keywords: Bayesian inference, Covariance graph model, Idiosyncratic Contagion Channels,
Latent Space Models, Systemic Risk, VAR

JEL: C11, C15, C51, C52, C55, G01

1. Introduction

Current understanding holds that the global financial crisis (henceforth GFC) did not
occur as a result of a single event but a cluster of crises that rippled through the financial
system (Bernanke, 2013; Tang et al., 2010). The report by the Financial Crisis Inquiry
Commission (2011) reveals that the impact of the GFC was driven by distress in one area
of the financial markets, the housing market, that led to failures in other areas by way
of interconnections and vulnerabilities that bankers, government officials, and others had
missed or dismissed. The vulnerabilities, according to Bernanke (2013), are the pre-existing
structural weaknesses of the financial system that amplified the initial shocks. There is a
myriad of existing studies to uncover these vulnerabilities using network models to identify
channels of shock transmission among financial institutions and markets (Acemoglu et al.,
2015; Arregui et al., 2013; Battiston et al., 2012; Billio et al., 2012; Diebold and Yilmaz, 2014;
Elliott et al., 2014; Ladley, 2013; Moghadam and Viñals, 2010). The common lesson learnt
from the recent crises and empirical research is the importance in understanding the structure
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of financial networks, how the interconnections are generated, and the effect of the network
on the stability or fragility of the system.

Financial institutions are often interconnected through bilateral obligations like direct de-
posits, lending, derivatives, etc. They are also interconnected through exposures to common
risk or market factors. Network of financial institutions can therefore be characterized by dif-
ferent links due to different modes of connection (Langfield and Soramäki, 2016). Analytical
works on modeling these interconnectedness can be classified into two main streams depending
on how network links are constructed. On one end, links emerge from analyzing balance sheet
data of direct bilateral transactions (Cont et al., 2013; Georg, 2013; Halaj and Kok, 2015; Mi-
noiu and Reyes, 2013). On the other end, network links are estimated from the co-movement
in market-based data on security prices (see Ahelegbey et al., 2016a; Barigozzi and Brownlees,
2019; Basu et al., 2016; Billio et al., 2012; Diebold and Yilmaz, 2014; Hautsch et al., 2015).
There is relatively little empirical work on the former, largely because constructing networks
on bilateral transactions requires detailed balance-sheet data and financial statements, which
are generally hard to obtain and have low update frequencies (at best, quarterly). There is
however a countless number of empirical works on market-based networks due to easy access
to public data. A common limitation with the latter is the inability to explain how the es-
timated links are formed between institutions. Also, such network estimation methods are
often unable to incorporate strategic behavior of institutions (Chan-Lau, 2017). This paper
advances a statistical technique to analyze market-based networks that incorporates strategic
behavior of institutions.

Market prices of financial securities usually come in the form of time series observations.
The commonest model adopted to approximate the dynamic interactions among asset returns
or volatilities is the vector autoregressive (VAR) representation. This class of model presents
a convenient framework to capture the serial correlation in the return or volatility of finan-
cial assets, and has been extensively applied to analyze financial networks (see Ahelegbey
et al., 2016a; Barigozzi and Hallin, 2017; Basu et al., 2016; Billio et al., 2012; Diebold and
Yilmaz, 2014). It is, however, well known that market prices that are meant to signal the
performance of institutions reflect both market (public) and firm-level information about the
institutions (Roll, 1988). Thus, the result of networks estimated from these observations
depends strongly on the relative amount of market (public) and firm-level information capi-
talized into the measurements. When applying VAR models, a distinction is made between
systematic (market driven) and idiosyncratic (firm driven) interconnections. The former is
usually analyzed via temporal dependence using Granger-causality techniques (Barigozzi and
Brownlees, 2019; Basu et al., 2016; Granger, 2008; Kock and Callot, 2015). The idiosyncratic
network, on the other hand, is analyzed via contemporaneous interactions of the VAR errors
using (partial) correlation-based approaches (Barigozzi and Brownlees, 2019; Battiston et al.,
2012; Giudici and Spelta, 2016). It has been shown that risk propagation via idiosyncratic
networks can have a far more severe impact on the financial stability of the system with a
higher likelihood of a crisis than through systematic networks (see Dungey and Gajurel, 2015;
Tang et al., 2010).

In this study, we advance the idea that links in idiosyncratic market-based networks can
be explained not simply by observed shared characteristics, but more by unobserved strategic
behaviors (proxied by latent position of institutions). We formulate a three stage hierarchical
model. The first stage approximates the dynamics in volatility of financial securities as a VAR
model. We fit the model to extract estimates of the idiosyncratic components. The second
stage estimates the adjacency matrix among the idiosyncratic components via a covariance
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graphical model (CGM). The final stage then models the adjacency matrix as a logistic
regression approximated by a latent positions model (LPM). We estimate our hierarchical
model using a Bayesian scheme. Thus, we refer to our approach as the Bayesian covariance
graph and latent positions model (BCGLPM).

The application of latent position in financial networks is motivated by the idea that “po-
sition matters”, i.e, the link between institutions is driven by their relative strategic positions.
For instance, it is well known in finance that to reduce risk, institutions and other investors
must diversify their investments. However, when the diversification strategy becomes similar
among many market players, micro-level diversification leads to macro-level concentration
which exposes institutions to common risk factors thereby creating a fragile system for the
spread of risk. Thus, the probability of a link between two institutions increases as their
latent positions become more similar.

The contributions of this work are manifold. Firstly, we contribute to the construction
of volatility networks from large samples of security prices using rolling-window VAR mod-
els. Our application is particularly related to the works of Barigozzi and Brownlees (2019);
Diebold and Yilmaz (2014); Engle et al. (2012). More precisely, our work is in the spirit of
Diebold and Yilmaz (2014), who estimated the dynamics of volatility connectedness via a
VAR approximated model by using a rolling estimation which is able to track the instability
in the financial system. The main difference of our application is that we do not only study
the dynamics of the network but also the latent positions that explains the links.

Secondly, we contribute to the growing research on large covariance selection. The co-
variance graphical approach considered in this study is different from concentration graphical
models, often referred to as covariance selection (Dempster, 1972). Covariance graphs are es-
timated by zeros in the covariance matrix while concentration graphs are generated by zeros
in the precision matrix. More so, concentration matrices represent conditional independence
as opposed to covariance matrices that capture marginal independence. Thus, concentra-
tion graphs are more sensitive to the inclusion/exclusion of relevant variables than covariance
graphs, given that some variables are in/out of the model. Although there are several methods
for sparse concentration graph selection, only a few address sparse covariance estimation (see
Bien and Tibshirani, 2011; Khare et al., 2011; Rothman et al., 2009; Silva and Ghahramani,
2009; Wang, 2015). We contribute to the literature on large sparse covariance estimation by
building on the Bayesian method of Wang (2015).

Thirdly, we contribute to the application of latent positions in financial networks. Our
work relates to a strands of literature ranging from eigen-decomposition of network matri-
ces (Hoff, 2008), to eigenmodel for longitudinal relational data (Hoff, 2015), dynamic latent
distance models (Sarkar and Moore, 2005; Sewell and Chen, 2015), and dynamic latent eigen-
models (Durante and Dunson, 2014). Another related but different stream of literature is the
application of factor models in finance (see Dungey et al., 2005; Dungey and Gajurel, 2015;
Forbes and Rigobon, 2002; Fox and Dunson, 2015; Lopes and Carvalho, 2007; Nakajima and
West, 2013). The difference, however, is that in standard factor models, the factors ana-
lyze the underlying drivers of the observed time series, while that of network models provide
insights on the strategic positions that explain the link between nodes.

Latent position models are usually applied in social network analysis where the network is
known and the task is to estimate the latent positions that explain the network links (see Hoff,
2008; Hoff et al., 2002). In our application, the network is unknown. Thus, incorporating the
latent positions increases the number of model parameters. Using a Bayesian technique, we
design an efficient scheme that infers jointly the network structure and the latent positions.
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Our scheme combines the covariance structure learning algorithm of Wang (2015) and the
simulation of latent positions by Hoff (2009). The highlight of our algorithm is that it samples
the network and latent positions iteratively, using information about the latter to update the
network priors.

We assess the stability of the network structure and latent positions of 150 publicly listed
institutions across the United States and Europe, covering 2002–2014. We find evidence
of high interconnectedness among institutions that began to manifest during the eve of the
global financial crisis (i.e early-2008) and the European sovereign debt crisis (i.e early-2011).
Furthermore, we find that the vulnerability in the system that manifested during the financial
crises actually started from early-2007 when many firms experienced liquidity shocks following
the fall in housing prices and the abrupt shutdown in sub-prime lending. An important
contribution of our application is that, by tracking the latent position, we find evidence that
periods of high vulnerability are also characterized by high spatial clustering, which can be
attributed to an increased similarity in strategic positions of institutions.

The rest of the paper proceeds as follows. In Section 2, we present a hierarchical model
and a discussion of the model inference scheme. In Section 3, we provide an illustration of
BCGLPM on synthetic datasets and a comparison with alternative approaches. Section 4
presents the empirical financial application and results, and Section 5 concludes the paper.

2. Bayesian Covariance Graph and Latent Positions Model

2.1. Hierarchical Model Formulation
This section presents a brief overview of the model formulation which consists of three

stages as shown in Figure 1. The red-dashed rectangle represents the first stage, the green
is second stage, and the blue is the third stage. The first stage is a VAR model that ap-
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Figure 1: An illustration of the hierarchical model configuration. The red circled variables represent the
observed data and the blue rectangle variables are our main parameters of interest.

proximates Y (a collection of the endogenous variables) as a function of X (a collection of
past observations of the endogenous variables and common market indicators), and an id-
iosyncratic term whose covariance matrix is Σ. The second stage estimates an adjacency
matrix of the network, G, associated with Σ via a covariance graphical model (CGM). The
third stage models the adjacency matrix, G, as a logistic regression approximated by a la-
tent positions model (LPM). This is done through a link a mapping function Z expressed in
terms of {U,Λ, θ, ξ}, obtained through eigen-decomposition of Z. More precisely, U is the
latent coordinates (positions) matrix, Λ is an eigenvalue matrix, θ is a constant and ξ is an
error term. Of all the parameters, our primary objective is inference on the idiosyncratic
dependence structure, G, and the underlying latent coordinates, U .
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2.1.1. VAR Model
Let Yt = (Y1,t, . . . , Yn,t) be an n-dimensional vector of endogenous variables at time t,

Mt = (M1,t, . . . ,Mm,t) is m-dimensional vector of common exogenous variables, and Et =
(E1,t, . . . , En,t), an n-dimensional vector of idiosyncratic factors. We consider the dynamics
of Yt as a stationary VAR(1) with exogenous covariates and error terms that follow a structural
equation model. The approximating model is given by

Yt = AyYt−1 +AmMt−1 + Et = AXt + Et, Et ∼ N (0,Σ) (1)
Et = BEt + εt = (In −B)−1εt, εt ∼ N (0, Q) (2)

where A = (Ay, Am) is an n×k matrix of coefficients, k = n+m, Xt = (Yt−1,Mt−1)′ is a k×1
vector of past observations, Et is independent and identically normal with covariance matrix
Σ, εt is a vector of structural errors independent and identically normal, with a diagonal co-
variance matrix Q, In is an identity matrix of order n, and B is an n×n coefficient matrix such
that Bi,j measures the contemporaneous effect of a shock of firm j on firm i. We assume the
parameters {Ay, Am,Σ, B,Q} are time-independent within a fixed window. Thus, adopting a
rolling-window estimation provides a dynamic inference for these parameters. The normality
assumption of the VAR model stems from the fact that the logarithmic transformation of
volatilities is approximately normal (see Andersen et al., 2003; Diebold and Yilmaz, 2014).
From our experience with large VAR models, most coefficients of lags greater than one tend
to be concentrated around zero. Despite this observation, the model can easily be extended
to higher lag orders or different lag orders on the exogenous and endogenous variables.

2.1.2. Covariance Graph Model (CGM)
Let Y = (Y ′1 , . . . , Y ′T )′, X = (X ′1, . . . , X ′T )′ and E = (E′1, . . . , E′T )′ be a collection of Yt,

Xt and Et over a fixed window of length T . We assume without loss of generality that E is
matrix-normally distributed. Following the expression in (2), the covariance structure of E
can be obtained as

Σ = (I −B)−1Q(I −B)−1′ (3)

where D−1′ is the transpose of D−1, Q = diag(σε1 , . . . , σεn), a diagonal matrix, and B is
the contemporaneous coefficients matrix of the error model in (2). From standard maximum
likelihood, given Σ, the elements in B and Q can be obtained by

Bi,πi = Σi,πiΣ−1
πi,πi

and Qii = Σi,i − Σi,πiΣ−1
πi,πi

Σ′i,πi
(4)

where Bi,πi is the vector of coefficients from a univariate linear regression of Ei on Eπi (the
predictors of Ei), Qii is the variance of εi, Σi,πi is the covariance between Ei and Eπi , and
Σπi,πi is the covariance among Eπi . Here Ei represents the i-th variable in E. The matrix
B encodes the relationship between the reduced-form errors in the sense that Bij , 0 if
Ej → Ei and 0 otherwise. From the correspondence between B and Σ in (4), the marginal
independence relationships between any pair Ei and Ej is such that,

Ei ↔ Ej ⇐⇒ Σi,j , 0 ⇐⇒ (Bij , 0 and Bji , 0) (5)

We define a Gaussian bi-directed graph model, G, on E which is determined by zeros in Σ (see
Bien and Tibshirani, 2011; Khare et al., 2011; Rothman et al., 2009; Silva and Ghahramani,
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2009). This establishes a relationship between Σ and G such that

Σij = 0 ⇐⇒ Gij = 0, and Σij , 0 ⇐⇒ Gij = 0 (6)

2.1.3. Latent Position Model (LPM)
Let U be n× r coordinate matrix of n points in an r-dimensional system. We denote with

ui, the i-th row of U (i.e., the i-th node position), and Uj as the n× 1 vector containing the
j-th column of U . Following Hoff (2008), we parameterize the ij-th entry of G via a probit
link function, given by

Gij = 1(Zij > 0) (7)
Zij = θ + u′iΛuj + ξij = θ + (UΛU ′)ij + ξij (8)

where 1(Zij > 0) is the indicator function, i.e., unity if Zij > 0 and zero otherwise, Z is the
mapping function with θ ∈ R as the constant, (UΛU ′)ij is the i-th row and the j-th column
of (UΛU ′), Λ = diag (λ1, . . . , λr), is a diagonal matrix of eigenvalues, and ξ is a symmetric
matrix of independent and identically distributed normal errors such that ξij = ξji.

As shown by Hoff (2008), the elements of Λ help identify the presence of homophily or
stochastic equivalence—where nodes have similar relational patterns with other nodes in the
network. Suppose the latent coordinates of node i are similar to those of j, i.e., ui ≈ uj , and
Ul,s > 0, l = i, j and s = 1, 2, and that the effect of Λ is such that λi > 0, i = 1, 2. Then
there is a tendency for nodes i and j to be connected. Thus, λi > 0 indicates homophily.
Alternatively, if λi < 0, i = 1, 2, then there is a tendency for nodes i and j to be disconnected,
although they share similar latent coordinates. Thus, λi < 0 indicates anti-homophily.

2.2. Parameters and Prior Specification
From the model discussed above, the parameters to estimate are (A,Σ, G, Z, U,Λ, θ, r).

In considering large numbers of variables with relatively small sample size, we are confronted
with the problem of over-parameterization. Estimating parameters jointly is a challenging
problem and a computationally intensive exercise.

To handle the over-parameterization in large VAR models, various techniques discussed
in the literature ranges from dynamic (sparse) factor and compression models (see Kaufmann
and Schumacher, 2013; Koop et al., 2016; Lopes and Carvalho, 2007), to model selection
and/or shrinkage methods (see Basu and Michailidis, 2015; George et al., 2008; Tibshirani,
1996), and graphical models for time series data (e.g., Ahelegbey et al., 2016a,b; Dahlhaus
and Eichler, 2003; Dobra et al., 2004).

We follow the literature adopting a Bayesian paradigm that shrinks the coefficients in A
while focusing on extracting estimates of the idiosyncratic component, E, and its associates
covariance matrix Σ. This is made feasible by integrating out A with respect to its prior
distribution to obtain a marginal likelihood function. Under the assumption that E follows
a matrix-normal distribution, E ∼ MN (0,Σ, IT ), where 0 is a T × n zero matrix, Σ is the
n × n row-specific covariance matrix, and IT is the column-specific covariance matrix under
the assumption that the idiosyncratic factors are independent over time. The matrix form
of (1) can be expressed as Y = XA′ + E. The conditional distribution of Y given A, Σ and
X is Y |A,Σ ∼MN (XA′,Σ, IT ), whose likelihood function is as follows:

P (Y |A,Σ) = (2π)−
nT
2 |Σ|−

T
2 etr

(
− 1

2[Σ−1(Y −XA′)′(Y −XA′)]
)

(9)
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where etr(·) is the exponential of the standard trace function.

2.2.1. Prior Distribution on A
We assume a matrix-normal conditional prior distribution ofA given Σ, A|Σ ∼MN (A0,Σ,Ψ)

with the following density

P (A|Σ) = (2π)−
1
2nk |Ψ|−

1
2n |Σ|−

1
2k etr

(
− 1

2[Σ−1(A−A0)Ψ−1(A−A0)′]
)

(10)

where A0 is the prior mean of A, the row-specific prior covariance matrix of A is proportional
to Σ, and the column-specific prior covariance matrix of A is proportional to Ψ. Note that
A0,Σ and Ψ are matrices of dimension n× k, n× n and k × k respectively.
Proposition 1. Under the prior P (A|Σ) in (10), the likelihood P (Y |A,Σ) in (9), and with
Sxx = X ′X+Ψ−1, Syx = Y ′X+A0Ψ−1, Syy = Y ′Y +A0Ψ−1A′0, and Sy|x = Syy−SyxS−1

xx S
′
yx,

the marginal likelihood for any covariance matrix Σ is

P (Y |Σ) ∝ |Sy|x|−
n
2 etr

(
− 1

2Σ−1Sy|x
)
. (11)

Proof. Combining P (Y |A,Σ) in (9) and P (A|Σ) in (10), the marginalization of A with respect
to its prior distribution is as follows:

P (Y |Σ) =
∫
A
P (Y |A,Σ) P (A|Σ) dA

∝
∫
A
etr
(
− 1

2Σ−1
[
A(X ′X + Ψ−1)A′ − 2(Y ′X +A0Ψ−1)A′ + (Y ′Y +A0Ψ−1A′0)

])
dA

∝
∫
A
etr
(
− 1

2Σ−1
[
ASxxA

′ − 2SyxA′ + Syy
])

dA

∝
∫
A
etr
(
− 1

2Σ−1
[
(A− SyxS−1

xx )Sxx(A− SyxS−1
xx )′ + Syy − SyxS−1

xx S
′
yx

])
dA. (12)

From the expression above, the posterior distribution of A is matrix-normal:

A|Y,X,Σ ∼MN (SyxS−1
xx ,Σ, S−1

xx ) (13)

Substituting Â = SyxS
−1
xx and Sy|x = Syy − SyxS−1

xx S
′
yx into (12),

P (Y |Σ) ∝ etr
(
− 1

2Σ−1Sy|x
) ∫

A
etr
(
− 1

2Σ−1(A− Â)Sxx(A− Â)′
)
dA .

By definition
∫
A
etr
(
− 1

2Σ−1(A− Â)Sxx(A− Â)′
)
dA = (2π)

nk
2 |Sxx|−

n
2 |Σ|

k
2 and

P (Y |Σ) = (2π)−
nT
2 |Ψ|−

n
2 |Sxx|−

n
2 |Σ|−

T
2 etr

(
− 1

2Σ−1Sy|x
)
. (14)

2.2.2. Prior Distribution on Σ and G
Following the spike and slab priors of Wang (2015), we assume an independent distribution

on the off-diagonals and diagonals of Σ given by

Σij |G ∼ N (0, Vij), and Σii|G ∼ Exp
(
Vii/2

)
7



where Vij is the ij-th column of V - an n× n symmetric hyper-parameter matrix of Σ. The
above assumes that the off-diagonal elements of Σ are normally distributed, and the diagonals
follows an exponential distribution. The density function is given by

P (Σ|G) =
∏
i,j

exp
(
− 1

2V
−1
ij Σ2

i,j

)
n∏
i=1

exp
(
− 1

2ViiΣi,i

)
1(Σ ∈ S+(G)) (15)

where S+(G) is the space of symmetric positive definite matrices with non-zero entries ac-
cording to G. In this application, we define Vij in a way that if Gij = 0 then Σij and the
associated parameter Vij = v2

0 are concentrated around zero, and if Gij = 1 then Σij and
Vij = v2

1 are different from zero. The choice of values for v0 and v1 is discussed in Section 2.3.
We consider the inclusion/exclusion of a link in G as a Bernoulli trial with density

P (G|U,Λ, θ) =
∏
i,j

ΓGij

ij

(
1− Γij

)(1−Gij)
, (16)

Γij = P (Gij = 1|U,Λ, θ) = Φ(θ + (UΛU ′)ij), (17)

where Γij ∈ (0, 1) is the probability of a link between nodes i and j, and Φ is the cumulative
density function of the standard normal distribution.

2.2.3. Distribution on (θ, Λ, ξ, r, U , Z)
We specify prior distributions for the parameters θ, λ = (λ1, λ2, . . . , λr), ξ, and U as:

θ ∼ N (θ0, τ
2
θ ), λ

iid∼ N (0, τ2
λ), U ∼ BMF(C,D),

r ∼ Unif (r, r̄), ξij
iid∼ N (0, 1), Z|G ∼ N (θ + UΛU ′,ΣZ)

where θ0, τθ, τλ, r, r̄, C, and D are the hyper-parameters. The above specification means that
the parameters θ, ξij , and λ = (λ1, λ2) are normally distributed. Finally, we assume the
columns of U are orthonormal and uniformly distributed in a r-dimensional space. The
commonly used distribution for U is the Bingham-von Mises-Fisher (BMF) on the Stiefel
manifold, Vr,n = {U ∈ Rn×r : U ′U = I} (Bingham, 1974; Fisher, 1953; Khatri and Mardia,
1977). The associated probability density function of U is given by

P (U |C,D) ∝ etr
(
DU ′CU

)
(18)

where C is n × n symmetric matrix and D is r × r diagonal matrix. The link function Z is
normally distributed with mean (θ+UΛU ′), and whose entries are constrained to be positive
or negative depending on G. The density function of Z is given by:

P (Z|U,Λ, θ) ∝ etr
[
− 1

4(Z − θ11′ − UΛU ′)′(Z − θ11′ − UΛU ′)
]

(19)

where 1 is a vector of ones. The off-diagonals of Z have unit variances and the diagonals have
variances of 2.

2.3. Setting Hyperparameters
For the hyperparameters governing the distribution of θ, i.e., (θ0, τ

2
θ ), we notice that θ0

is positively related the link probabilities, Γij . The expression of Z in (8) can be viewed as a
8



penalized bilinear similarity matrix function with θ as the penalty term. Thus, negative values
of θ imply a lower value in Z and lower probability of the existence of links. We consider
the problem of estimating a graphical model for large numbers of variables as one that can
be approximated by a sparse structure. Thus, one would expect that the prior expectation
of θ is negative. For this application, we set θ0 = Φ−1(2/(n − 1)) and τ2

θ = 100. The choice
of a θ0 is a prior that is consistent with sparsity constraint in many application of Gaussian
graphical models (see Wang, 2015).

For the spike and slab parameters, we follow standard applications by assuming v0 to be
small, concentrated around zero, and v1 as a scaled version of v0 and different from zero. By
standardizing all datasets in our applications, we set v1 = 1 and vary v0 = {0.02, 0.05}.

Following Hoff (2009), we set τ2
λ = n. As argued by the author, this value reflects the

variance of the eigenvalues of a n× n matrix of independent standard normal noise.
We assume the prior expectation of A is a zero matrix, A0 = 0 and the coefficients in A

are a-priori independent within and across equations. Thus, Ψ = η−1Ik is a diagonal matrix,
where η−1 is the prior variance and k is the number of covariates in X. Following our choice
of A0 = 0, the posterior expectation of A in (13) becomes Â′ = (X ′X + ηIk)−1X ′Y , which
is the same as the ridge estimator with η as the ridge parameter. We set η = c0k, where c0
varies on a grid between 0.1 to 10. To determine the optimal choice of c0, we divide the data
into 80% for estimation of Â′ and 20% for point forecast evaluation. In order not to have the
posterior distribution of A dominated by its prior variance, we chose a grid, c0, where the
first difference of the mean squared forecast error (MSFE) is less than a tolerance level, e.g.,
0.1. This is to avoid overfitting the data as well as not shrinking all coefficients to zero.

2.4. Choice of Dimension
For choice of the dimension of the latent space, we adapt the approach by Handcock et al.

(2007) such that for each r ∈ [r, r̄], we estimate a marginal likelihood of P (Y, Ĝ, Û |r) with Ĝ
and Û being the estimated network and latent position of the nodes. Thus, we approximate
the BIC for the selection of r by

BIC = BICGM +BICPR +BICPOS (20)

where BICGM is the BIC of the graphical model, BICPR is BIC of the probit regression
model, and BICPOS is the BIC of the latent position. The BIC of the graph is given by

BICGM = −2 logP (Y |Σ̂, Ĝ) + |Ĝ| log T (21)

where Ĝ is the candidate graph, |Ĝ| is the number of links in the network, T is the number of
observations, and logP (Y |Σ̂, Ĝ) denotes the maximum likelihood function of the associated
candidate graph model. We approximate the BIC of the probit regression model by

BICPR = −2 logP (Ĝ|Û , Λ̂, θ̂) + dPR logNPR (22)

where (Λ̂, θ̂) are the maximum likelihood estimator for (Λ, θ) given U = Û , dPR is the number
of elements in (Λ, θ) and NPR = n(n−1)/2. The BIC of the latent position model is given by

BICPOS = −2 logP (Û |Ĉ, D̂) + dPOS logn (23)
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where (Ĉ, D̂) are the maximum likelihood estimator for (C,D) given U = Û , dPOS is the
number of elements in (C,D).

2.5. Bayesian Model Inference
Given the data, Y , and the prior distributions on the parameters, we are particularly

interested in the posterior inference of the graph structure, G, and the underlying coordinates
matrix, U . We proceed by performing the necessary posterior estimation through application
of a Gibbs sampler that consists of the following steps:

[Σ|G, Y ], [G|Σ, U,Λ, θ], [Z|G,U,Λ, θ], [θ|Z,U,Λ], [Λ|Z,U, θ], and [U |Z,Λ, θ].

Note that the second Gibbs step is collapsed, that is, we marginalize Z. We sample {Σ, G}
following the results from Wang (2015) and {Z, θ,Λ, U} following Hoff (2009). A detailed
description on how to sample the parameters is available in the online supplemental material.

3. Simulation Experiments

We evaluate the efficiency of our inferential approach on simulated datasets under the
following scenarios:

Lag-0 Setup : Yt = Et, Et ∼ N (0,ΣG)
Lag-1 Setup : Yt = AYt−1 + Et, Et ∼ N (0,ΣG)

where ΣG is a covariance matrix constrained by a sparse graph G, such that Σij = 0 if
Gij = 0 and Σij , 0 if Gij = 1. The Lag-0 Setup generates data from a regular Gaussian
covariance graph model and the Lag-1 Setup incorporates an AR(1) temporal dependence on
the endogenous variables with a Gaussian covariance graph structure on the residuals.

We generate edges in G from independent Bernoulli distributions with probability 0.2.
We construct A to be a diagonal matrix. Following the random graph pattern of Wang and
Li (2012), we construct ΣG = BG + δIn, where BG is a symmetric matrix constrained by G.
We generate BG, A and δ as follows:

(BG)ij =


1 if i = j
βij if Gij = 1
0 otherwise

, Aij =
{
ai if i = j
0 otherwise , δ = nmin(δb)−max(δb)

1− n

where δb is the eigenvalues of BG. The values of (βij = βji) and ai are randomly drawn
from a uniform distribution on (−0.9,−0.3) ∪ (0.3, 0.9). For the Lag-1 Setup, we initialize
Y0 ∼ N (0, In). For each setup, we generate a dataset of dimension n ∈ {50, 100, 150} and
sample size T = 2n. We replicate the simulation and estimation exercise 10 times.

3.1. Competing Methods
Since there are no existing approaches for joint inference of the graph and latent positions,

it is reasonable to compare our approach with closely related methods suitable for large
covariance selection. To the best of our knowledge, the stochastic search structure learning
(SSSL) method by Wang (2015) appears to be a suitable benchmark to compare our graph
inference performance since it has been shown to be effective in dealing with large problems
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and complicated models. Following the suggestion by the author of that paper, we set v0 =
0.02 and the hyper-parameter for the graph priors, π = 2/(n− 1).

We present two versions of our BCGLPM approach for the inference of the graph. We
denote by BCGLPM(0), the lag-0 version of the BCGLPMwhere the underlying approximated
model is a structural equation model with a Gaussian covariance graph structure. Similarly,
we denote by BCGLPM(1), the lag-1 version of the BCGLPM which assumes that the data
is simulated from a VAR(1) model with idiosyncratic components that follow a Gaussian
covariance graph structure. In both cases, our goal is to infer the graph structure and the
latent nodal positions. To implement the BCGLPM(0) means setting X to be a null matrix
which leads to replacing Sy|x = Syy = Y ′Y in (14). Since the BCGLPM(0) is closely related
to the SSSL, the former is expected to be very competitive against the latter.

3.2. Convergence and Mixing of MCMC
We run 10,000 MCMC iterations for all competing methods with the first 3,000 as the

burn-in sample. All computations were implemented in MATLAB through the Boston Uni-
versity Shared Computing Cluster. We examine the mixing of the chains generated by the
Gibbs sampler for the samples of θ, Λ, U , G, and Z. We monitor the mixing of the MCMC
by computing the negative log likelihood score:

−2 logL(Y |M) = −2 logP (Y |Σ, G) − 2 logP (Z|θ, U,Λ) . (24)

We use the score to compute the potential scale reduction factor (PSRF) of Gelman and
Rubin (1992). The chain is said to have converged if PSRF ≤ 1.2. Details of the mixing of
these quantities are provided in the supplementary material.

We estimate the posterior probability of the edges by averaging over the sampled networks,
i.e., γ̂ij = 1

H

∑H
h=1G

(h)
ij , where H is the total number of iterations after the burn-in sample.

Following the uncertainty in the determination of the presence/absence of a link between nodes
in the network, we consider a one-sided posterior credibility interval for the edge posterior
distribution. Using the criterion in Ahelegbey et al. (2016a), we parameterize the ij-th entry
of the estimate of Ĝ via a link function:

Ĝij = 1(qij > c), qij = γ̂ij − z(1−α)

√
γ̂ij(1− γ̂ij)

neff
(25)

where neff is the number of effective sample size, and z(1−α) is the z-score of the normal
distribution at (1−α) significance level. The default for c is 0.5, α is 0.05 and z(1−α) = 1.65.

3.3. Choice of Dimension
We report in Table 1 the BIC and average run time for every 100th iteration to choose

the optimal dimension of the latent space for r ∈ {2, . . . , 5}. The result is obtained by fixing
θ0 = Φ−1(2/(n − 1)), τ2

θ = 100, τ2
λ = n, v0 = 0.02 and varying n ∈ {50, 100, 150} with

T = 2n. For each different n, the optimal number of latent space dimension chosen by
the BIC is r = 2. The result further shows that updating the positions of nodes in a two-
dimensional latent space records the fastest run time for different simulation experiments.
We, therefore, use r = 2 for our study which seems to agree with most applications involving
multidimensional scaling and provides a convenient framework for the network visualization.
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r = 2 r = 3 r = 4 r = 5

n = 50 BIC 10464.59 10601.32 10690.58 10799.78
Time 34.20 38.85 44.71 48.03

n = 100 BIC 45061.72 45265.89 45466.36 45671.08
Time 145.62 161.10 176.76 191.75

n = 150 BIC 105292.19 105575.64 105802.00 106154.28
Time 1206.59 1283.11 1363.88 1430.30

Table 1: Comparing model selection for choice of r. Boldface values indicate the best choice for each metric.

3.4. Graph Predictive Evaluation
We analyze the network edge predictive performance of the competing methods in terms of

graph accuracy (ACC) and the area under the receiver operator characteristic curve (AUC).
The AUC depicts the true positive rate (TPR) against the false positive rate (FPR) depending
on some threshold. TPR is the number of correct positive predictions divided by the total
number of positives. FPR is the ratio of false positives predictions overall negatives. We
report the average TP (true positives), FP (false positives), ACC and AUC for each of the
competing methods.

3.5. Results
Table 2 presents the comparison of the graph performance of the simulation exercise. The

result shows that higher values of v0 produces more sparse networks with lower number of
TP and FP . Furthermore, v0 = 0.02 performs better at predicting higher number of true
links depicted in the DGP than that of v0 = 0.05. The overall predictive accuracy (i.e ACC
and AUC) of the former is consistently higher than the latter.

In the following, we compare only BCGLPM(0) and BCGLPM(1) under v0 = 0.02 with
SSSL as the benchmark. When the true DGP is a lag-0 setup, that is without temporal
dependence, we expect BCGLPM(0) and SSSL to outperform the BCGLPM(1). We, however,
notice that overall, the estimated networks of the BCGLPM(0) and BCGLPM(1) appear
more dense than the SSSL, with a higher average number of true predicted links and higher
predictive accuracy. This is evidence that modeling network links via latent positions and
the ability to update graph priors with latent position information produces better network
structures than the benchmark method with fixed graph prior.

When the true DGP is a lag-1 setup, both SSSL and BCGLPM(0) are designed to estimate
the network ignoring the temporal dependence in the underlying model. The result, therefore,
shows that by ignoring the temporal dependence, the SSSL and BCGLPM(0) overestimates
the average number of false predictions. Overall, the BCGLPM(1) infers a more accurate
network structure and outperforms the SSSL and the BCGLPM(0) in both simulation setups.
This provides evidence in favor of modeling idiosyncratic dependence in multivariate time
series data using our proposed method.

4. Financial Connectedness and Latent Position Analysis

We analyze the interconnectedness and latent positions of top listed institutions in the
financial sector of the United States and 15 European countries. We obtain daily price indexes
on 150 institutions covering January 2002 to August 2014. The institutions reported include
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SSSL BCGLPM(0) BCGLPM(1)

Model v0 0.02 0.02 0.05 0.02 0.05

Lag-0 Setup

n = 100,
T = 2n

TP 32.60 170.40 98.30 187.50 114.20
FP 1.00 17.90 4.20 46.60 15.10
ACC 80.64 83.08 81.90 82.84 82.00
AUC 52.55 63.16 60.64 63.59 61.01

n = 150,
T = 2n

TP 63.70 320.90 123.70 373.30 148.30
FP 0.90 26.50 1.90 72.20 10.20
ACC 80.66 82.73 81.18 82.79 81.33
AUC 52.64 61.63 56.57 62.29 57.32

Lag-1 Setup

n = 100,
T = 2n

TP 30.30 84.60 60.70 80.00 49.10
FP 26.00 88.10 49.80 21.60 9.00
ACC 80.08 79.92 80.21 81.17 80.80
AUC 51.81 54.72 54.25 56.57 55.40

n = 150,
T = 2n

TP 51.20 172.90 89.90 154.10 60.80
FP 41.00 177.00 73.20 33.60 5.70
ACC 79.97 79.85 80.03 80.96 80.38
AUC 51.38 54.26 53.06 55.66 53.37

Table 2: Model performance for different scenarios. Boldface values indicate the best choice for each metric.

50 banks (25 from US, 25 from Europe), 50 insurance companies (25–US, 25–Europe), 40
real estates companies (20–US, 20–Europe), 4 other top US banks that have been acquired
or bankrupted (like Bear Sterns, Countrywide Financial Corporation, Lehman Brothers and
Merrill Lynch) and 6 major global market indexes (S&P 500, Dow Jones, Nasdaq Composite,
Euro Stoxx 600, Euro Stoxx 50 and HangSeng). Data on the global market indexes were
obtained from Yahoo finance and the rest from Datastream. Countries represented by these
institutions in Europe are Austria, Belgium, Switzerland, Germany, Denmark, Spain, Finland,
France, Greece, Ireland, Italy, the Netherlands, Norway, Sweden, and the UK. A detailed
description of the data is available in the online supplemental material.

Let Pi,t be the price index of institution i on day t, and Ri,t = 100(logPi,t−1− logPi,t) be
the log-return. A preliminary analysis of the sample shows that out of the 150 institutions,
64% have serially correlated returns. Given the autoregressive behavior of the return series,
we proxy the daily volatility of the prices by absolute first difference of the daily returns:

σi,t ≈
∣∣∣Ri,t −Ri,t−1

∣∣∣ (26)

This is based on the idea that, if returns at time t− 1 is a prediction of the returns at time t,
then σi,t measures the absolute daily prediction error (deviation). For robustness check, we
proxy σi,t using a GARCH(1,1) model.

We evaluate the performance of our model, BCGLPM(1), against the BCGLPM(0) and the
SSSL of (Wang, 2015) as a benchmark. Note that the BCGLPM(0) and the SSSL estimates
the network of the log volatilities, Yt, via a structural equation model setup ignoring the
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serial correlated feature of volatilities of security prices. The difference, however, is that
unlike the SSSL, the BCGLPM(0) adopts the latent position model to explain the network
links and to update the graph priors. The BCGLPM(1), on the other hand, estimates a VAR
approximated model via a Bayesian ridge-regularization and infers jointly the network of the
idiosyncratic component and the latent positions underlying the network. To implement the
competing methods, we set the prior hyperparameters as discussed in the simulation exercise.

We characterize the dynamics of the networks via a yearly (approximately 240 trading
days) rolling window. Our choice of window size is intended to capture the annual (12-months)
dependence among the institutions. We set the increments between successive rolling windows
to a one-month period. The first window of our study is from January 2002 – December 2002,
followed by February 2002 – January 2003, and the last from September 2013 – August 2014.
In all, we have 141 rolling windows. First, we study the evolution of the network topology
in terms of network density and clustering (transitivity). We then analyze the clustering
behavior of firms by incorporating information from the latent position and the network
structure. We further examine the Procrustes similarity of the latent positions to monitor
the strategic behavior of institutions over time.

4.1. Network Density
Let G be an n-node graph without self-loop. We characterize (through numerical sum-

maries) the time-varying nature of interconnections by monitoring the network density,D(G) =
E(G)/

(n
2
)
, i.e., the number of estimated links in the network divided by the total number of

possible links. We present in Figure 2, the evolution of the network densities obtained from
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Network Density (%) 2002−12−01 / 2014−08−01
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Figure 2: Network density of the competing methods via a 12-month rolling window estimation.

the yearly rolling window estimation. The BCGLPM(1) networks appear denser than the
rest, while the BCGLPM(0) is moderately dense and that of the SSSL is very sparse. Denser
networks have been shown to provide risk-sharing mechanism among firms as well as shock
propagation (Acemoglu et al., 2015; Elliott et al., 2014; Glasserman and Young, 2016). The
BCGLPM(1), thus, produces networks where shock propagations are more severe than the
rest.

For comparison purposes, we define a Standardized Network Density Index (SNDI) — a
measure of the degree of connectedness by rescaling the network density to a zero mean and a
unit standard deviation. Figure 3 shows the SNDI for the competing methods. The zero-line
of the plot can be viewed as the threshold line where negative values indicate bearable level
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Figure 3: Standardized network density of the competing methods via a 12-month rolling window estimation.

of connectedness and positive values indicate a higher degree of system-wide vulnerability for
risk propagation. From the result the periods of positive SNDI recorded by the SSSL are
February 2008 – November 2010, and October 2011 – October 2012; that of BCGLPM(0)
are December 2007 – April 2011, and July 2011 – January 2013; and that of BCGLPM(1)
are February 2008 – January 2010, and June 2010 – March 2013. This shows that all the
competing methods reveal that the crises times (global financial crisis (GFC) and the Euro
area crisis) are characterized by high degree of system-wide vulnerabilities.

Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007 Dec 2007

Standardized Network Density Index (SNDI) 2004−01−01 / 2007−12−01
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BCGLPM(0)
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Figure 4: Standardized network density of the competing methods between January 2004 – December 2007.

We now focus on market events that preceded the GFC. In Figure 4, we depict the SNDI for
the competing methods between 2004 to late-2007. We notice that all the methods recorded
negative SNDI over the sub-period, which seem to indicate market “tranquillity” (or “calm
before the storm”). A look the plots shows that, the SNDI of the SSSL is relatively stable over
the sub-period. That of the BCGLPM(0) decreased during the early part of the period with
a rise after 2006. The BCGLPM(1), on the other hand, shows a rise and fall in SNDI between
2004–2006 but a steady rise after 2006. This shows that, although the SNDI is negative over
the sub-period, the calmness recorded by the SSSL can be misleading. Instead, we notice from
the BCGLPM(0) and BCGLPM(1) that the vulnerability that began to manifest early-2008
did not just show up but was gradually mounting after 2006.

According to the timeline of market events, the years preceding the GFC saw a change
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in the monetary policy of the Federal Reserve along with capital inflows to the US, creating
conditions that allowed banks to lower rates and requirements. This gave way to easy lending
even to consumers with less or no credit to acquire risky mortgages, in the anticipation
that consumers would be able to quickly refinance at easier terms. The sub-prime mortgage
origination between 2003 to 2006 increased from a low of 8.3% to an incredible level of
23.5%. Furthermore, the absence of regulatory actions contributed to the encouragement of
many financial institutions holding highly related securities which led to a higher correlation
among many investors and exposure to common risk factors. Within the sub-period under
review, many top US institutions increased their leverages making them vulnerable to shocks.
Around early- to mid-2007, many of these institutions experienced a liquidity shock following
the fall in housing prices and abrupt shutdown of sub-prime lending. This led to losses
for many financial institutions who held mortgage-related securities. Such events disrupted
several market operations creating a cascade of the sale of securities by many institutions,
lowering their values and increasing their volatility connections. These factors explain the
steady rise in the vulnerabilities that began to manifest in the early period of 2008. More
so, the near-collapse and acquisition of Bear Sterns by JP Morgan Chase in March 2008
further affected many institutions. The bankruptcy of Lehman Brothers (the fourth-largest
U.S. investment bank at the time), and the bailout of American International Group (AIG
- the world’s largest insurance company) in September 2008, further triggered the actions of
other market participants. This led to higher risk connections which amplified the shocks,
affecting a broader aspect of the US financial system and many other correlated markets and
economies.

4.2. Network Clustering Index
We study the dynamics of the degree to which financial institutions tend to cluster together

and its relevance to the financial contagion process. We achieve this by monitoring the global
clustering index of the estimated networks over the rolling windows. The clustering considered
for this analysis follows Barrat and Weigt (2000) which corresponds to the social network
concept of transitivity captured numerically as:

Cl(G) = 3× (number of triangles)
(number of open triads) (27)

where open triads are connected sub-graph consisting of three nodes and two edges. The
index takes values between 0 and 1 and measures the tendency for nodes in a network form
triangles. We observe from Figure 5 that the transitivity coefficient is quite high in turbulent
times, with the index significantly higher than 0.3 in almost all cases.

4.3. Weighted Clustering Index
We extend the notion of average transitivity index to analyze the dynamics of institu-

tions clustering behavior taking into account the latent positions. To fully characterize the
interactions among the institutions, we considered representing the network of nodes as inter-
connections among spatial units by assigning weights to the edges using the cosine distance of
the latent coordinates. Let W = {wij} be n× n weighted adjacency matrix with wij ∈ (0, 1)
such that wij , 0 if Gij = 1 and zero otherwise. The weighted clustering coefficient following
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Figure 5: Network clustering coefficient of the BCGLPM(0) and BCGLPM(1), January 2002 – August 2014.

Barrat et al. (2004) is computed numerically by:

WC(G) = 1
n

∑
i

WC(i) = 1
n

∑
i

[ 1
di(n− 1)

∑
j,k

wij + wik
2 GijGikGjk

]

where WC(i) is the weighted clustering coefficient of node i, and di =
∑
j wij is the weighted

degree of node i. Figure 6 presents the time series of the weighted (average) clustering

Dec 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014

Weighted Clustering Coefficient 2002−12−01 / 2014−08−01

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

BCGLPM(0)
BCGLPM(1)

Figure 6: Weighted clustering coefficient of the BCGLPM(0) and BCGLPM(1), January 2002 – August 2014.

coefficients over the sample period. Though the range of the plot seems different from that
of the unweighted global clustering coefficient in Figure 5, the dynamics are not significantly
different. Thus, our result suggests that clustering among financial institutions becomes
stronger in turbulent financial times and especially during the GFC and the Eurozone crisis
period.

4.4. Procrustes Analysis
To investigate the strategic position of firms in financial markets, we adopted a Pro-

crustean approach to analyze the latent positions underlying the estimated networks. It is
well known that two different coordinates could produce positions that are very similar but
look different due to rotation or scaling. The Procrustes function, therefore, transforms one
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set of coordinates to make them comparable to the other through translation, uniform scaling,
rotation and reflection (see Dryden and Mardia, 2016).

Let U0 and U1 denote the coordinates of the positions estimated by the BCGLPM(0) and
BCGLPM(1) respectively. We compute Û as the Procrustean transformation of U1 with U0

as the target. The transformation is generally expressed as:

Û = ρU1H + c (28)

where ρ is a scalar dilation, H is a 2 × 2 orthogonal matrix representing a rotation and
reflection, and c is a 2 × 1 translation vector. In this application, we evaluate the similarity
between two different coordinates of the nodal positions using Procrustes similarity metric,
denoted by S(U0, U1) = 1−D(U0, U1) where D(U0, U1) is the standardized distance between
the target, U0 and the transformed (i.e, Û). Like any similarity measure, values close to zero
(one) indicate high dissimilarity (similarity) in the set of coordinates. Figure 7 shows the
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Figure 7: Similarity of the latent positions, S(U0
t , U

1
t ) estimated by BCGLPM(0) and BCGLPM(1), and

S(U1
t , U

1
t+1) measures the change in latent positions of BCGLPM(1) between two time periods.

dynamics of the similarity in the latent strategic position of financial institutions over the
sample period. The result records the lowest levels of similarity in latent positions between
late-2003 to mid-2007 and late-2013 to 2014, and the highest values between late-2008 to late-
2009. Thus, the strategic position of financial institutions differ significantly during normal
(or tranquil) periods and turbulent times.

We notice that the identified period of exceptionally low (high) Procrustes similarity
seems to coincide with periods negative (positive)-SNDI. As discussed earlier, the losses in
US sub-prime mortgages around early- to mid-2007 affected not just US institutions but
other multinational financial institutions (e.g BNP Paribas - the largest French bank). This
spurred up a change in strategic operations of other key market players after the signal
from BNP Paribas in August 2007. Thus, many market players including investors and
financial institutions stopped trading certain commodities, lenders quickly withdrew from
many programs, and investors dumped their mortgage-backed security holdings and increased
their holdings in seemingly safer money market funds and treasury bonds. Therefore in an
attempt to reduce individual risk, many market players who pursue similar diversification
and investment strategy end up creating a fragile system, vulnerable to the propagation of
shocks. This to a large extent explains the rise in the similarity measure between late-2007
to late-2009 (the GFC period).
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Further comparison with events in the global financial market shows that the rise in the
similarity of the latent positions between 2010–2013 coincides with a time of struggle among
Euro area members to recover from the global recession. As a result, the EU was thrown into
a crisis that centered on heavily indebted countries like Greece, Ireland, Portugal, Spain, and
Italy. We, therefore, notice a quick rise in the similarity among the institutions early-2010 and
another from mid-2011 to late-2013. The latter sub-period can be explained by the threat
to the EU financial institutions and the global financial system when the crisis of Greece,
Ireland, and Portugal began to affect Spain and Italy (the third largest Euro area economy
and second-biggest debtor to bond investors). More importantly, many European institutions
were heavily exposed to Spain and Italy, thus, a sovereign default by these two countries will
spread the crisis within and beyond Europe. This event spurred calls for changes in strategic
operations among investors, sovereign bondholders and financial institutions.

4.5. Correlation of Network Statistical Measures
We turn our attention to the correlation among the different network statistical measures

considered so far (see Table 3). SNDI(1), GClust(1) and WClust(1) in the table denote the
standardized network density index, the global clustering index and the weighted clustering
coefficient of the BCGLPM(1) networks respectively. The table shows that despite the differ-
ences in the various network statistical measures, the results are strongly positively correlated.
More importantly, the similarity metric is positively related with network density and clus-

SNDI(1) GClust(1) WClust(1) S(U1
t , U

1
t+1)

SNDI(1) 1 0.8143 0.8967 0.6856
GClust(1) 0.8143 1 0.8227 0.5931
WClust(1) 0.8967 0.8227 1 0.6018
S(U1

t , U
1
t+1) 0.6856 0.5931 0.6018 1

Table 3: Correlation of the Network Statistical Measures.

tering. It is therefore safe to conclude that, periods of dense financial interconnections are
characterized by high clustering among institutions which are attributable to similarities in
strategic operations among counterparties.

4.6. Network Visualization
To visualize the estimated network structure and latent node positions capture by our

proposed scheme, we report in Figures 8 and 9 some selected yearly rolling windows. The
figure shows both individual and group level representation of institutions. Selected institu-
tions are represented by the abbreviation of their names. At group level, the nodes are color
coded with shapes to classify the institutions into regional and institutional sectors. The
triangle-shaped nodes represent European institutions and circle-shaped nodes for their US
counterparts. Green-color nodes represent Banks, red for Insurance companies, blue for Real
Estates, and cyan for currently non-existing institutions.

Unlike standard network graph representation, the layouts depicted in the figures are
fully controlled by the latent coordinates jointly estimated with the network structure via the
BCGLPM approach. The figure shows significant changes in the network configuration and
node positions over the selected networks. We see evidence of spatial clustering among some
regional and institutional sectors for sub-periods. For instance, the structure for the yearly
rolling window ending December 2007 shows a group of European institutions, especially
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Figure 8: A representation of the network structure for the yearly rolling windows 2004–2009. US-BK is US
Banks, US-IN for US Insurance Companies, US-RE for US Real Estates, EU-BK for EU Banks, EU-IN for EU
Insurance Companies, EU-RE for EU Real Estates, and US-DD for US institutions currently not in existence.

banks (in green triangles) concentrated at the top left corner, and their US counterparts (in
green circles) at the bottom, while US real estate companies (in blue circles) are gathered at
the top right corner.

20



●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●
●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●
●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●
●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

BAC
BK

C
GS

JPM
MS STT

WFC

AIG

MET

PRU

BARC

BBVA
SANBNPACA

CSGN
DBK
HSBA

INGA
RBSSTAN

UBSN
UCG

AGN

ALV

G

AV

CS

PRU

December, 2010

● ● ●US−BK US−IN US−RE EU−BK EU−IN EU−RE

●●

●●
●●

●●

●●

●●
●● ●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●● ●●

●●

●●

●●
●●

●●

●●

●●●●

●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●● ●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●
●●

BAC
BK

C

GS
JPM

MS

STT

WFC

AIG

MET

PRU

BARC

BBVA

SAN

BNPACA

CSGN

DBKHSBA

INGARBS

STAN

UBSN

UCG

AGN
ALV

GAV

CS
PRU

December, 2011

● ● ●US−BK US−IN US−RE EU−BK EU−IN EU−RE

●●

●●

●●

●●

●●

●●

●●
●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

BAC
BK

C

GS

JPM
MS

STT
WFC

AIG

MET
PRU

BARC

BBVASAN
BNP

ACA
CSGN

DBK

HSBA

INGA
RBS

STAN

UBSN

UCG

AGN

ALV

G

AV

CS

PRU

December, 2012

● ● ●US−BK US−IN US−RE EU−BK EU−IN EU−RE

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●● ●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
BAC

BK

C
GS

JPM

MS
STT

WFC

AIG
MET

PRU

BARC
BBVA

SAN

BNP

ACA

CSGN

DBK

HSBA

INGA

RBS

STAN

UBSN

UCG

AGN
ALV

G

AV

CS

PRU

December, 2013

● ● ●US−BK US−IN US−RE EU−BK EU−IN EU−RE

Figure 9: Network for years 2010–2013. US-BK is US Banks, US-IN for US Insurance Companies, US-RE for
US Real Estates, EU-BK for EU Banks, EU-IN for EU Insurance Companies, and EU-RE for EU Real Estates.

The December 2008–2011 figures also depict a relatively different layout and a quite
interesting network structure. From these graphs, we notice many US real estate institutions
completely separated from the rest in terms of positioning though connected to themselves and
other institutions. Thus, we detect strategic clustering behavior among institutions belonging
to troubled sectors/markets during and after the financial crisis, providing evidence in favor
of the use of latent position analysis in the estimation of financial networks.

5. Conclusion

In this paper, we study the strategic position of institutions in the construction of financial
network from market-based data. We postulate that connectivity among institutions emerges
not simply from the co-movement in observed security prices, but more from the similarity of
the strategic behaviors proxied by latent factors. We, therefore, propose a hierarchical model
that characterizes the idiosyncratic linkages among financial institutions by approximating the
underlying multivariate volatility interactions as a VARmodel. We estimate the approximated
model via a Bayesian ridge-regularization and inferred jointly the network of the idiosyncratic
dependence and latent positions underlying the network. We present an efficient Markov
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chain Monte Carlo algorithm that samples the network and latent positions iteratively, using
information from the latter to update the graph prior.

We demonstrate the effectiveness of our approach through simulation and empirical appli-
cations. We study the idiosyncratic volatility networks among 150 publicly listed institutions.
The list of financial institutions is composed of banks, insurance companies, and real estates
operating in the U.S. and Europe. The sample period covers January 2002 to August 2014.
We proxy the daily volatility measure by the absolute first-order difference in daily log returns
and conduct a robustness check using volatilities proxied by a GARCH process. Since there
are no existing approaches for joint inference of the graph and latent positions, we compare
the performance of our approach with the stochastic search structure learning method by
Wang (2015), which appears to be a suitable benchmark due to its effectiveness in dealing
with large covariance graph inference problems. We study the dynamics of the network and
latent positions using a yearly rolling window estimation. A sensitivity analysis is conducted
by considering a 2-year rolling window.

The result of the empirical analysis reveals that a higher level of interconnectedness and
vulnerability of the system began to manifest early-2008. In analyzing the years preceding the
global financial crisis, the result shows that 2004–2007 sub-period may not be as calm as many
studies have suggested. Rather, by tracking and incorporating the latent position of institu-
tions in the construction of the idiosyncratic networks, we find evidence that the vulnerability
that began to manifest early-2008 did not just begin to show up on the eve of the crisis but
actually started after 2006 when many firms started experiencing liquidity shocks following
the fall in housing prices and the abrupt shutdown in sub-prime lending. Furthermore, we
find that periods of high financial system vulnerability (proxied by high network densities) is
also characterized by high clustering of institutions which can be attributed to a high level
of similarities in strategic operations among counterparties. For instance, the events of 2008,
beginning with the near-collapse of Bear Sterns, the bankruptcy of Lehman Brothers and the
bailout of AIG triggered several reactions and disruptions in financial market activities. In an
attempt to reduce individual risk, many market players pursued similar diversification and in-
vestment strategy which ended up creating a fragile system, vulnerable to the propagation of
shocks. This led to higher clustering among some institutions belonging to some sectors with
a rise in the similarities of their strategic operations. Also, the events of sovereign defaults
in the Euro area during the sovereign crisis also triggered similar behavior among financial
institutions. We demonstrate through graphical representation that incorporating the latent
positions underlying the network reveals a strategic clustering behavior of firms such that
institutions belonging to troubled sectors/markets appear separated from the rest (e.g real
estates). This provided evidence in favor of the use of stochastic network and latent position
models in analyzing financial contagion. As a recommendation to ensure a more robust and
stable system, regulators must monitor both micro-level strategic behavior of institutions as
well as macro-level concentration to avoid many key financial market players and investors
becoming highly interconnected via exposure to common risk factors.

SUPPLEMENTARY MATERIAL

We present a detailed description of the sampling approach of the parameters and provide
results of the mixing of the Markov chains generated by the Gibbs sampler for the samples
of θ, Λ, the network structure, G, and Z in our simulation experiment. We conduct several
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robustness checks to validate the sensitivity of our empirical results using: 1) a different mea-
sure of volatility as proxied by GARCH(1,1) of daily stock returns; 2) a different specification
of the spike-and-slab parameter, i.e. v0 = 0.05 ; 3) a two year rolling window for the model
estimation; and 4) a different specification of the latent space dimension, (r = 3).
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Appendix A. Details of Sampling Approach of the Parameters

This section provides a detailed description of the sampling approach of the parameters.

Appendix A.1. Sampling Σ
For i = 1, . . . , n and −i = {1, . . . , n}\{i}, we partition Σ, Sy|x and V as

Σ =
(

Σ−i σ−i
σ′−i σii

)
, Sy|x =

(
S−i s−i
s′−i sii

)
, V =

(
V−i v−i
v′−i vii

)
(A.1)

where σii, sii and vii are the i-th diagonal elements of Σ, Sy|x and V respectively, σ−i, s−i
and v−i are (n − 1) × 1 vectors, i.e., the rest of the elements on the i-th column of Σ, Sy|x
and V , and Σ−i, S−i and V−i are (n− 1)× (n− 1) matrices.

From the marginal likelihood function P (Y |Σ) in (2.10) and the priors P (Σ|G) in (2.14)
and P (G|Z) in (2.15), we obtain the following expression

P (Σ|Y,G) ∝ |Σ|−
T
2 etr

(
− 1

2Σ−1Sy|x
)∏
i,j

exp
(
− 1

2V
−1
ij Σ2

i,j

) n∏
i=1

exp
(
− 1

2ViiΣi,i

)
. (A.2)

Using the Sherman-Morrison-Woodbury formula, the inverse of the partitioned Σ is given by

Σ−1 =
(

Σ−1
−i + Σ−1

−iσ−iγ
−1σ′−iΣ−1

−i −Σ−1
−iσ−iγ

−1

−σ′−iΣ−1
−i γ

−1 γ−1

)
(A.3)

where γ = σii − σ′−iΣ−1
−iσ−i. The determinant of the partitioned Σ is

|Σ| = |σii − σ′−iΣ−1
−iσ−i||Σ−i| = γ|Σ−i| . (A.4)
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Following Wang (2015), we consider block updates of Σ by focusing on a column and row at
a time. From (A.2) and the partitions in (A.1), the distribution of the elements of the i-th
column in Σ, i.e. (σ−i, σii), conditional on Y,Σ−i, G is given by

P (σ−i, σii|Y,Σ−i, G) ∝ γ
T
2 exp

(
− 1

2
[
σ′−iΣ−1

−iS−iΣ
−1
−iσ−iγ

−1 − 2s′−iΣ−1
−iσ−iγ

−1

+ siiγ
−1 + σ′−i(viiΣ−1

−i +D−1
v )σ−i + viiγ

])
(A.5)

where Dv = diag(v−i). We consider a change of variable (σ−i, σii) → (µ, γ), where µ = σ−i
and γ = σii − σ′−iΣ−1

−iσ−i). The associated Jacobian is a constant independent of (µ, γ).
Following Proposition 2 of Wang (2015), the conditional distribution of µ and γ given Y,Σ−i, G
is a Gaussian-generalized inverse Gaussian distribution such that

µ | Y,Σ−i, G, γ ∼ N
(
W−1Σ−1

−i s−iγ
−1, W−1

)
γ | Y,Σ−i, G, µ ∼ GIG

(
q, a, b

)
whereW = Σ−1

−iS−iΣ
−1
−i γ

−1 +viiΣ−1
−i +D−1

v , and (q, a, b) are the parameters of the generalized
inverse Gaussian distribution (GIG), where q = 1− 1

2T , a = vii, and b = µ′Σ−1
−iS−iΣ

−1
−iµ−

2s′−iΣ−1
−iµ+ sii. The density of the GIG is given by

P (x|q, a, b) =
(a
b

)q/2 xq−1

2Kq(
√
ab)

exp
(
− 1

2
[
ax+ b/x

])
(A.6)

where Kq is the modified Bessel function of the second kind.

Appendix A.2. Sampling G
Combining P (Σ|G) in (2.14) and P (G|U,Λ, θ) in (2.15), the conditional distribution of

each edge Gij given Σ, U , Λ, and θ is independent Bernoulli distributed,

Gij |Σ, U,Λ, θ ∼ Ber
(

bij1
bij1 + bij2

)

where bij1 = Γij/v1 exp{−σ2
ij/(2v2

1)}, and bij2 = (1− Γij)/v0 exp{−σ2
ij/(2v2

0)}.

Appendix A.3. Sampling Z
Since Zij |U,Λ, θ ∼ N (θ + (UΛU ′)ij , 1) independently and Gij = 1(Zij > 0), we have:

Zij |G,U,Λ, θ ∼ N (θ + (UΛU ′)ij , 1) 1(Zij > 0)Gij 1(Zij < 0)1−Gij (A.7)

that is, each Zij is independently distributed as a truncated version of the prior but conditional
on being positive or negatively truncated given Gij .
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Appendix A.4. Sampling θ
Following the distribution of Z in (A.7) and a normal prior distribution on θ, the condi-

tional distribution of θ given {Z,U,Λ} is as follows:

P (θ|Z,U,Λ) ∝ etr
(
− 1

4Z
′
θZθ

)
etr
( 1

2Z
′
θUΛU ′

)
exp

(
− 1

2τ2
θ

(θ − θ0)2
)
. (A.8)

where Zθ = Z − θ11′. The posterior distribution of

θ|Z,U,Λ ∼ N
( 2τ2

θ

2 + n(n− 1)τ2
θ

(∑
j>i

(Z − UΛU ′)ij + θ0
τ2
θ

)
,

2τ2
θ

2 + n(n− 1)τ2
θ

)

where
∑
j>i

(Z − UΛU ′)ij is a summation of the upper off-diagonals of (Z − UΛU ′).

Appendix A.5. Sampling Λ
Combining the distribution of Z in (A.7) and the prior distribution of Λ = diag(λ1, λ2) in

(2.20), the conditional distribution of Λ given {Z, θ, U} is as follows:

P (Λ|Z, θ, U) ∝ etr
(
− 1

2
[1
2Λ2 − Z ′θUΛU ′

]) 2∏
r=1

exp
(
− 1

2
λ2
r

τ2
λ

)
. (A.9)

Let Ur be the r-th column of U . The posterior distribution for λr, r = 1, 2 is given by

λr|Z, θ, U ∼ N
(

τ2
λ

2 + τ2
λ

U ′rZθUr,
2τ2
λ

2 + τ2
λ

)
.

Appendix A.6. Sampling U
Following standard practice, the distribution of U given {Z, θ,Λ} is:

P (U |θ, Z,Λ) ≈ P (U |Zθ,Λ) ∝ etr
( 1

2Z
′
θUΛU ′

)
= etr

( 1
2ΛU ′ZθU

)
. (A.10)

Comparing (A.10) and (18), we set C = Zθ/2, and D = Λ. We sample the columns of U
following Gibbs sampler in Hoff (2009). Let U−j = U\Uj denote U excluding the j-th column.
For a random draw of r ∼ {r, r̄}, we perform the following:

1. obtain N−r, the null space of U−r and compute x = N ′−rUr.
2. compute C̃ = Bu(r, r)N ′−rCN−r
3. update x ∼ P (x|C̃) ∝ exp(x′C̃x)
4. set Ur = N−rx

Appendix B. Convergence and Mixing of MCMC

This section provides the results of the mixing of the Markov chains generated by the
Gibbs sampler for the samples of θ, Λ, G, and Z in our simulation experiment.

Appendix C. Financial Interconnectedness: Sensitivity Analysis

Table C.4 gives the data description used for our financial application.
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Figure B.10: Plot of samples and autocorrelation of θ, Λ, model score, autocorrelation of model score, the
network density and clustering coefficient.
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Appendix C.1. Alternative Volatilty Measure
We perform the first robustness check by using volatility of daily returns proxied by a

GARCH(1,1) process. The results (see Figure C.11), however, confirm our findings that the
interconnectedness and vulnerability of the system that began to manifest early-2008 actually
started mounting up from early-2007. The difference between Figure C.11 and Figure 3 is
that the SSSL in the former is not smooth and flat as depicted in the latter.

Standardized Network Density Index using volatility proxied by GARCH(1,1)
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Figure C.11: Standardized network density of the competing methods using volatility proxied by GARCH(1,1).

Appendix C.2. Sensitivity to Spike-and-Slab Parameter
Figure C.12 presents the standardized network density of the methods when the spike-

and-slab parameter v0 = 0.05. Compared to Figure 3, the result shows that the SSSL is highly
sensitive to the choice of hyperparameters. The BCGLPM methods, on the other hand, are
more robust to different specification of the spike-and-slab parameters due to the fact that
the method allows for update of the graph priors using information from the latent positions
underlying the network.

Standardized Network Density Index for Different Spike−and−Slab parameters
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Figure C.12: Standardized network density when the spike-and-slab parameter v0 = 0.05.
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Appendix C.3. Robustness to Alternative Rolling Window Size
Figure C.13 shows the standardized network density from a 2-year rolling window estima-

tion. The result is not much different from that of Figure 3 in the sense that the SSSL shows
a smooth and flat density between 2004–2007 while the BCGLPM (1) again shows a steady
rise over the sub-period.

Standardized Network Density Index from 2 Year Rolling Window
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Figure C.13: Standardized network density of the competing methods using a 2-year rolling window.

Appendix C.4. Sensitivity to Alternative Latent Dimensional Space
The results of Figure C.14 shows the standardized network density and similarity of the

latent positions from a 3-dimensional latent space model is not different from that of the
2-dimensional latent space reported in Figure 3 and Figure 7.

Table C.4: Financial Data Description By Country and Industry.

No. Institution Ticker Country/Region Industry
1 S&P 500 GSPC US Market Index
2 Dow Jones DJI US Market Index
3 Euro Stoxx 600 DJSTOXX EU Market Index
4 Hang Seng Index HSI Asia Market Index
5 Nasdag Composite IXIC US Market Index
6 Euro Stoxx 50 STOXX50E EU Market Index

7 Immofiz IIA Austria Real Estate
8 Vienna Insurance Group A VIG Austria Insurance
9 Cofinimmo COFB Belgium Real Estate
10 Credit Suisse Group N CSGN Switzerland Bank
11 Helvetia Holding N HELN Switzerland Insurance
12 PSP Swiss Property Ag PSPN Switzerland Real Estate
13 Swiss Life Holding SLHN Switzerland Insurance
14 Swiss Prime Site SPSN Switzerland Real Estate
15 Swiss Re SREN Switzerland Insurance
16 UBS UBSN Switzerland Bank
17 Zurich Insurance Group ZURN Switzerland Insurance
18 Allianz ALV Germany Insurance
19 Commerzbank CBK Germany Bank
20 Deutsche Bank DBK Germany Bank
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No. Institution Ticker Region Industry
21 Hannover Ruck. HNR Germany Insurance
22 Muenchener Ruck. MUV Germany Insurance
23 Danske Bank DANSKE Denmark Bank
24 Topdanmark TOP Denmark Insurance
25 BBV Argentaria BBVA Spain Bank
26 Mapfre MAP Spain Insurance
27 Banco Santander SAN Spain Bank
28 Sampo A SAMPO Finland Insurance
29 Credit Agricole ACA France Bank
30 BNP Paribas BNP France Bank
31 CNP Assurances CNP France Insurance
32 AXA CS France Insurance
33 Fonciere Des Regions FDR France Real Estate
34 Gecina GFC France Real Estate
35 Societe Generale GLE France Bank
36 ICADE ICAD France Real Estate
37 Natixis KN France Bank
38 Klepierre LI France Real Estate
39 Scor SE SCR France Insurance
40 National Bank of Greece ETE Greece Bank
41 Piraeus Bank TPEIR Greece Bank
42 Bank of Ireland BIR Ireland Bank
43 Banca Monte Dei Paschi BMPS Italy Bank
44 Assicurazioni Generali G Italy Insurance
45 Intesa Sanpaolo ISP Italy Bank
46 Unicredit UCG Italy Bank
47 Unipolsai US Italy Insurance
48 Aegon AGN Netherlands Insurance
49 ING Groep INGA Netherlands Bank
50 Unibail-Rodamco UL Netherlands Real Estate
51 Wereldhave WHA Netherlands Real Estate
52 DNB DNB Norway Bank
53 Storebrand STB Norway Insurance
54 Castellum CAST Sweden Real Estate
55 JM JM Sweden Real Estate
56 Nordea Bank NDA Sweden Bank
57 Aviva AV UK Insurance
58 Barclays BARC UK Bank
59 British Land BLND UK Real Estate
60 Derwent London DLN UK Real Estate
61 Great Portland Estates GPOR UK Real Estate
62 Hammerson HMSO UK Real Estate
63 HSBC Hdg. HSBA UK Bank
64 Hiscox HSX UK Insurance
65 Intu Properties INTU UK Real Estate
66 Land Securities Group LAND UK Real Estate
67 Legal & General LGEN UK Insurance
68 Lloyds Banking Group LLOY UK Bank
69 Old Mutual OML UK Insurance
70 Prudential PRU UK Insurance
71 Royal Bank Of Sctl.Gp. RBS UK Bank
72 RSA Insurance Group RSA UK Insurance
73 Segro SGRO UK Real Estate
74 Shaftesbury SHB UK Real Estate
75 Standard Chartered STAN UK Bank
76 St.Jamess Place STJ UK Insurance
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No. Institution Ticker Region Industry
77 Aflac AFL US Insurance
78 American Intl.Gp. AIG US Insurance
79 Arthur J Gallagher AJG US Insurance
80 Allstate ALL US Insurance
81 AON Class A AON US Insurance
82 American Express AXP US Bank
83 Bank of America BAC US Bank
84 BB&T BBT US Bank
85 Bank of New York Mellon BK US Bank
86 BOK Finl. BOKF US Bank
87 Berkshire Hathaway A BRKA US Insurance
88 Brown & Brown BRO US Insurance
89 Citigroup C US Bank
90 Chubb CB US Insurance
91 Comerica CMA US Bank
92 CNA Financial CNA US Insurance
93 Capital One Finl. COF US Bank
94 Corrections Amer New CXW US Real Estate
95 Duke Realty Corporation DRE US Real Estate
96 Equity Lifestyle Props. ELS US Real Estate
97 Essex Property Tst. ESS US Real Estate
98 Fifth Third Bancorp FITB US Bank
99 Federal Realty Inv.Tst. FRT US Real Estate
100 General Gw.Props. GGP US Real Estate
101 Goldman Sachs Gp. GS US Bank
102 Huntington Bcsh. HBAN US Bank
103 Hudson City Banc. HCBK US Bank
104 HCC Insurance Hdg. HCC US Insurance
105 Welltower - Health Care Reit HCN US Real Estate
106 HCP HCP US Real Estate
107 Hartford Finl.Svs.Gp. HIG US Insurance
108 Host Hotels & Resorts HST US Real Estate
109 JP Morgan JPM US Bank
110 Keycorp KEY US Bank
111 Kimco Realty KIM US Real Estate
112 Loews L US Insurance
113 Lincoln National LNC US Insurance
114 Liberty Property Tst. LPT US Real Estate
115 Macerich MAC US Real Estate
116 Metlife MET US Insurance
117 Markel MKL US Insurance
118 Marsh & Mclen MMC US Insurance
119 Morgan Stanley MS US Bank
120 M&T Bank MTB US Bank
121 Mitsub.Ufj Finl.Gp. Adr MTU US Insurance
122 Northern Trust NTRS US Bank
123 Realty Income O US Real Estate
124 Principal Finl.Gp. PFG US Insurance
125 Progressive Ohio PGR US Insurance
126 Prologis PLD US Real Estate
127 PNC Finl.Svs.Gp. PNC US Bank
128 Prudential Finl. PRU US Insurance
129 Public Storage PSA US Real Estate
130 Regency Centers REG US Real Estate
131 Regions Finl.New RF US Bank
132 Charles Schwab SCHW US Bank
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No. Institution Ticker Region Industry
133 Sl Green Realty SLG US Real Estate
134 Simon Property Group SPG US Real Estate
135 Suntrust Banks STI US Bank
136 State Street STT US Bank
137 Torchmark TMK US Insurance
138 Travelers Cos. TRV US Insurance
139 Unum Group UNM US Insurance
140 US Bancorp USB US Bank
141 Vornado Realty Trust VNO US Real Estate
142 Ventas VTR US Real Estate
143 Wells Fargo & Co WFC US Bank
144 W R Berkley WRB US Insurance
145 Alleghany Y US Insurance
146 Zions Bancorp. ZION US Bank

147 Bear Stearns BSC US Bank
148 Countrywide Financial Corp. CCR US Bank
149 Lehman Brothers LEHM US Bank
150 Merrill Lynch MER US Bank
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Standardized Network Density Index from a 3 Dimension Space
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Figure C.14: Standardized network density and similarity of latent positions from a 3-dimensional latent space.
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