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Abstract

A stylized fact is that realized variance has long memory. We show that, when
the instantaneous volatility is a long memory process of order d, the integrated
variance is characterized by the same long-range dependence. We prove that the
spectral density of realized variance is given by the sum of the spectral density
of the integrated variance plus that of a measurement error, due to the sparse
sampling and market microstructure noise. Hence, the realized volatility has
the same degree of long memory as the integrated variance. The additional
term in the spectral density induces a finite-sample bias in the semiparametric
estimates of the long memory. A Monte Carlo simulation provides evidence that
the corrected local Whittle estimator of Hurvich et al. (2005) is much less biased
than the standard local Whittle estimator and the empirical application shows
that it is robust to the choice of the sampling frequency used to compute the
realized variance. Finally, the empirical results suggest that the volatility series
are more likely to be generated by a nonstationary fractional process.
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1 Introduction

A well documented stylized fact is that the volatility of the financial returns

is characterized by long-range dependence, or long memory, see, for instance,

Baillie (1996), Bollerslev and Mikkelsen (1996), Dacorogna et al. (1993), Ding

et al. (1993), Granger and Ding (1996). More recently Andersen et al. (2001a),

Andersen et al. (2001b), Andersen et al. (2003), Martens et al. (2009) report

evidence of stationary long memory in the realized variance (or realized volatility,

RV ) series.

In this paper, we theoretically study the long memory properties of the inte-

grated variance (IV ) and RV , assuming that the instantaneous volatility, σ2(t),

is characterized by long memory of order d.

The contributions of this paper are threefold. Firstly, we demonstrate that

IV has the same fractional integration order of σ2(t), since it has a pole at the

zero frequencies that depends on the long memory parameter, d. This result

holds for both stationary and nonstationary long memory stochastic volatility

models. Secondly, we show that when we consider sparse sampling and the pres-

ence of market microstructure noise, see Bandi and Russell (2008), Hansen and

Lunde (2006) and for a recent survey McAleer and Medeiros (2008), the spectral

density of RV is given by the spectral density of IV plus an additional constant

term, which depends on the variance of the measurement error term. Therefore,

RV is also a long-range dependent process and it has the same long memory of

IV and σ2(t). Moreover, in absence of microstructure noise, the spectral density

of RV converges to that of IV , as the sampling frequency increases.

Thirdly, we show by simulation that the local Whittle (LW) estimator of

the long memory parameter is biased in finite samples as a consequence of the

presence of the measurement error in the spectral density of RV . In the context

of our signal plus noise model, an alternative choice to the LW estimator is the

corrected LW estimator of Hurvich et al. (2005), that explicitly accounts for the

presence of the measurement error. We evaluate the impact that the choice of

the sampling frequency and the variance of the measurement error have on the

finite sample bias and the variability of both estimators. The results highlight
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the dramatic reduction of the finite-sample bias of the corrected LW estimator

with respect to the standard LW estimator.

The effectiveness of corrected LW estimator is also evident from the estimates

of the degree of long memory of the volatility of 28 stocks traded on the NYSE.

The results obtained with RV at different sampling frequencies confirm the

robustness of the corrected LW estimator to the presence of the measurement

error, unlike the LW estimator, which is affected by the choice of the sampling

frequency since this impacts on the variance of the measurement error. Indeed,

the LW estimates decrease as the sampling frequency is getting smaller. The

corrected LW estimates are not only larger than the uncorrected ones, but also

rather constant with respect to the sampling frequency. This is particularly

evident from the long memory signature plot of the RV , namely the plot of

the long memory estimates obtained with RV at different sampling frequencies.

The corrected estimates are always larger than 1/2, which is the upper bound

of the stationary region. These results suggest that a deeper analysis of the

nonstationary volatility models is called for.

This paper is organized as follows. In Section 2 we show that, when the

instantaneous volatility is driven by a fractional Brownian motion, the degree

of fractional integration of the IV process is the same as the instantaneous

volatility. Section 2.1 illustrates the characteristics of the measurement error.

Section 3 discusses the semiparametric techinque to obtain unbiased estimates

of the long memory parameter of IV , based on a careful characterization of the

spectral density of the realized variance. In Section 3.1 the results of the Monte

Carlo simulations are illustrated and discussed. Section 4 compares the results

obtained with the corrected and the uncorrected estimators of long memory,

based on RV estimated on the real data. Section 5 concludes.
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2 Long memory in integrated and realized

variance: theoretical results

Let P (t) be the price of an asset, where its logarithm, p(t), follows the stochastic

differential equation:

dp(t) = m(t)dt+ σ(t)dW (t) (1)

whereW (t) is a standard Brownian motion and m(t) is locally bounded and pre-

dictable. σ2(t) is assumed to be independent of W (t) and càdlàg, see Barndorff-

Nielsen and Shephard (2002a,b). Moreover, it is assumed that σ2(t) is a long

memory process, such that

fσ2(λ) ∼ cλ−2d as λ→ 0 (2)

where c ∈ R+ and fσ(λ) is the spectral density of σ
2(t). When 0 < d < 1/2, the

process σ2(t) is stationary, while when 1/2 ≤ d < 1, the process σ2(t) is non-

stationary, see Solo (1992), Velasco (1999a,b), Hurvich and Ray (1995, 2003)

and Hurvich et al. (2005). In the nonstationary long memory case, the spectral

density is not defined and it is replaced by the so called pseudo spectral density,

which is the limit of the expectation of the sample periodogram. As noted by

Hurvich and Ray (2003), the pseudo-spectral density plays a similar role as the

ordinary spectral density in determining the properties of the periodogram, when

d > 1/2, see also Hurvich et al. (2005, p.1288).

An example of a stationary long memory process for σ2(t) that satisfies

condition (2) is the fractional Ornstein-Uhlenbeck process of Comte and Renault

(1998):

d lnσ2(t) = −k lnσ2(t)dt+ γdWd(t) (3)

where k > 0 is the drift parameter, while γ > 0 is the volatility parameter and
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Wd(t) is the fractional Brownian motion (fBm), which is defined
1 as

Wd(t) =
1

Γ(1 + d)

∫ t

0
(t− s)ddW (s) +

∫ 0

−∞
[(t− s)d − (−s)d]dW (s) (4)

The solution of (3) can be written as lnσ2(t) =
∫ t
0 e
−k(t−s)γ dWd(s). In particu-

lar, for 0 < d < 1/2, Comte (1996) and Comte and Renault (1998) show that the

process lnσ2(t) has long memory of order d, if k∞ = γd/k is finite and different

from zero. Comte and Renault (1998) show that, when k > 0, the volatility

process σ2(t) is asymptotically equivalent (in quadratic mean) to the stationary

process2:

σ̃2(t) = exp

(∫ t

−∞
e−k(t−u)γ dWd(u)

)
, k > 0 0 < d <

1

2
. (5)

They prove that the spectral density, fσ̃2(λ), of the process σ̃2(t), is proportional

to λ−2d as λ→ 0, so that the volatility process inherits the long-memory property

induced by the fBm. More recently, Comte et al. (2010) show that also the class

of affine fractional stochastic volatility models, satisfies condition (2).

In the following proposition, we show that the IV has the same long memory

degree of the instantaneous volatility.

Proposition 1 Assuming that σ2(t) has a spectral density (or pseudo spectral

density) that admits the representation in (2) around 0, then limλ→0 λ
2dfIV (λ) =

c ∈ R+ where fIV (λ) is the spectral density (or pseudo spectral density) of IVt =

∫ t
t−1 σ

2(u)du.

It is interesting to note that this result is proved under the assumption that σ2(t)

has a spectral density (or pesudo spectral density) proportional to λ−2d at the

origin as in (2). As a consequence of Proposition (1), at the origin the spectral

density (or pseudo spectral density) of the IV has the same behavior as that of

the instantaneous volatility, so that IV has the same degree of long memory as

σ2(t). This result holds for stationary and nonstationary long memory instan-

1The literature on long memory processes in econometrics distinguishes between type I and type
II fractional Brownian motion. These processes have been carefully examined and contrasted by
Marinucci and Robinson (1999) and Davidson and Hashimzade (2009).

2The volatility process σ2(t) coincides almost surely with σ̃2(t).
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taneous volatilities. Strictly speaking, finding a degree of long memory of IV

larger than 1/2 implies an instantaneous volatility of the same fractional order.

Although a model specification for the instantaneous volatility that allows for

nonstationary long memory is potentially interesting and empirically relevant,

nonstationary long memory continuous time stochastic volatility models are not

yet investigated in literature.3 In Section 3.1, we propose a nonstationary long

memory process for the instantaneous volatility, and we study by simulations the

consequences of nonstationarity on the long memory of IV . In the next section,

we analyze how the presence of long memory in the IV translates in long-range

dependence of the RV .

2.1 The measurement error

In this section we characterize the measurement error associated with the RV

estimator. To simplify the notation, we consider an equidistant partition 0 =

t0 < t1 < . . . < tn = 1, where ti = i/n, and ∆ = 1/n, that is the interval is

normalized to have unit length. Define ri,∆ = pi∆,∆ − p(i−1)∆,∆. Adopting the

notation of Hansen and Lunde (2005), the RV ∆ at sampling frequency ∆ is

RV ∆ =

n∑

i=1

r2i,∆ (6)

and Barndorff-Nielsen and Shephard (2002b) derived a distribution theory for

RV ∆ when n→∞,

√
n(RV ∆ − IV ) d→ N(0, 2IQ),

where IQ =
∫ 1
0 σ

4(u)du is the integrated quarticity. In this paper we focus

on the series of non-overlapping IV , {IVt}Tt=1, where [0, T ] represents our sam-

pling period. Further, the time series of non-overlapping RV ∆ is composed by
{
RV ∆

t =
∑n

i=1 r
2
t,i,∆

}T

t=1
, where rt,i,∆ = pt−1+i∆,∆ − pt−1+(i−1)∆,∆.

4 We are in-

terested in the estimation of the long memory of IVt, using the observations on

3For example, the estimates of long memory presented in Comte and Renault (1998) are larger
than 1/2.

4In order to obtain non-overlapping RV ∆
t ’s the first return included in the computation of RV ∆

t

is rt,2,∆ = pt−1+2∆,∆ − pt−1+∆,∆.
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RV ∆
t .

2.1.1 No Noise Case

Barndorff-Nielsen and Shephard (2002b) and Meddahi (2002) characterize the

discretization error, when RV is used to measure the IV . While RV ∆ converges

to IV when ∆ → 0, the difference may be not negligible for a given ∆ > 0.

Following Barndorff-Nielsen and Shephard (2002b) and Meddahi (2002), we can

decompose RV ∆
t , for a given ∆, as

RV ∆
t = IVt + u∆t . (7)

with the discretization error equal to

u∆t =

n∑

i=1

u∆t,i, (8)

where u∆t,i = r2t,i,∆ − σ2t,i,∆ is the discretization error in th i-th subinterval, with

σ2t,i,∆ =
∫ t−1+i∆
t−1+(i−1)∆ σ

2(u)du. When the drift m(t) is non-zero, Meddahi (2002)

proves that u∆t has a non-zero mean. Furthermore, as pointed out by Barndorff-

Nielsen and Shephard (2002b) and Meddahi (2002), the correlation between the

IVt and the noise term is zero when there is no leverage effect, that is dW in (1)

and dWd in (3) are uncorrelated processes.

In the next Proposition we characterize the properties of the spectral density

of RV ∆.

Proposition 2 Consider the processes for p(t) and RV ∆
t defined in (1) and

(6). Assume that condition (2) holds for σ2(t). Let m(t) = µ and assume no

leverage effect, ρ = corr(dW (t), dWd(t)) = 0,

i. For ∆ > 0, the spectral density (or pseudo spectral density) of RV ∆
t is

given by

fRV ∆(λ) = fIV (λ) + fu∆(λ) (9)

and limλ→0 λ
2dfRV ∆(λ) = limλ→0 λ

2d(fIV (λ) + fu∆(λ)) = c.
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ii. When ∆→ 0, Var(u∆t )→ 0, then

lim
∆→0

fRV ∆(λ) = fIV (λ). (10)

And

lim
λ→0

[
lim
∆→0

λ2dfRV ∆(λ)

]
= lim

λ→0
λ2dfIV (λ) = c. (11)

For a given ∆ > 0, the spectral density (or pseudo spectral density) of RV ∆
t

is equal to that of IVt plus an additional term which depends on the variance

of u∆t . This means that RV
∆
t has the same degree of long memory of IVt since

fu∆(λ) =
Var(u∆

t
)

2π is constant with respect to λ. In the ideal situation where prices

are recorded continuously (∆ → 0), the spectral density of RV ∆
t converges to

that of the IVt and, again, they share the same degree of long memory. It should

be noted that the results in Proposition 2 extend to any stochastic volatility

process for which the spectral density (or the pseudo spectral density) of IVt

exists. Note that the results in (9) and (11) are valid when m(t) = µ 6= 0 in

(1), since the discretization error remains an uncorrelated process. However, in

this case, a closed from expression for Var[u∆t ] becomes more involved than that

provided by Barndorff-Nielsen and Shephard (2002a), because it depends also

on m(t).5

For example, when the instantaneous volatility follows the process in (3) and

m(t) = 0, as in Barndorff-Nielsen and Shephard (2002a, p.257), the Var[u∆t ]

term is equal to

Var[u∆t ] = 2∆−1 ·
{
2Var[σ̃2(t)] ·

∫ ∆

0

∫ v

0
r(u)dudv +∆2E[σ̃2(t)]2

}
, (12)

where

E[σ̃2(t)] = exp

(
ω2

2

)
, Var[σ̃2(t)] = [exp(ω2)− 1] exp (ω2) (13)

with ω2 ≡ Var[lnσ2(t)] = γ2π
Γ2(1+d)k1+2d cos (dπ)

, see Casas and Gao (2008), and

5Meddahi (2002) derives a closed form expression for Var[u∆t ] for the class of eigenfunction stochas-
tic volatility models and assuming that m(t) = µ.
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r(·) denotes the autocorrelation function of the process σ̃2(t). It is clear that

the parameters in (3) affect E[σ̃2(t)] , Var[σ̃2(t)], and Cov(σ̃2(t+h), σ̃2(t)), and,

through these, impact on the variance of the discretization error. It is hard to

obtain closed-form expressions for the partial derivatives of Var[u∆t ] w.r.t. the

parameters in (3), thus we investigate this point by simulations in Section 3.1.6

Differently from discrete-time stochastic volatility framework, where the vari-

ance of the measurement error is unrelated to the volatility parameters, in this

setup the variance of the discretization error is a highly non-linear function of

the instantaneous volatility process parameters. In the next section, we will

characterize the measurement error and the spectral density of RV ∆
t when the

prices are contaminated by the microstructure noise.

2.1.2 Microstructure Noise Case

Suppose now that the intradaily price is observed with error, due to the presence

of microstructure noise,

p̃(t) = p(t) + ǫ(t) (14)

where p(t) is the latent true, or efficient, price process that follows (1). The term

ǫ(t) is the noise around the true price, with mean 0 and finite fourth moment.

In particular, ǫ(t) is i.i.d. and it is independent of the efficient price and the true

return process. Over periods of length ∆, we have

r̃t,i,∆ =
(
pt−1+i∆,∆ − pt−1+(i−1)∆,∆

)
+ (ǫt,i,∆ − ǫt,i−1,∆) = rt,i,∆ + ηt,i,∆. (15)

With discretization and microstructure noise, and m(t) = µ, the measurement

error of RV ∆
t is given by

ξ∆t = u∆t +

n∑

i=1

η2t,i,∆ + 2




n∑

j=1

σt,i,∆zt,iηt,i,∆


+ 2∆µ

n∑

j=1

ηt,i,∆. (16)

As noted by Bandi and Russell (2006), while the efficient return is of order

Op(
√
∆), the microstructure noise is of order Op(1) over any period of time.

6The double integral in (12) can only be approximated for ∆→ 0.
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This means, that, when ∆ → 0, the microstructure noise dominates over the

true return process, and longer period returns are less contaminated by the

noise than shorter period returns. Given the properties of ǫ(t), then

Proposition 3 Consider the processes for p(t), p̃(t) and RV ∆
t defined respec-

tively in (1), (14) and (6). Let m(t) = µ and assume no leverage effect,

ρ = corr(dW (t), dWd(t)) = 0,

i. For ∆ > 0,

fRV ∆(λ) = fIV (λ) + fξ∆(λ) (17)

where fξ∆(λ) =
Var(ξ∆

t
)

2π is the spectral density of the measurement error

term. It follows that

lim
λ→0

λ2dfRV ∆(λ) = c, (18)

with c > 0.

ii. For ∆→ 0, Var(ξ∆t )→∞ and the fRV ∆(λ)→∞, ∀λ.

Proposition 3 extends the results of Proposition 2, namely RV ∆
t is character-

ized by the same degree of long memory of the IVt even when the microstructure

noise is present and ∆ > 0. When prices are observed with a microstructure

noise, the long memory signal, IVt, turns out to be contaminated by a measure-

ment error, whose variance is given by the sum of two components: the variance

of the discretization error Var(u∆t ), and the term due to the presence of the mi-

crostructure noise, which is given by ∆−1(E(η4t,i,∆)− σ4η) + 4σ2η∆
−1E

[
σ2t,i,∆

]
+

4∆µ2σ2η , see (37) in Appendix A.3. In accordance with Proposition 3, the effect

of the microstructure noise on the variance of ξ∆t , diverges as ∆→ 0, see Bandi

and Russell (2006), and dominates the long memory signal which cannot be

identified anymore. However, for a given ∆ > 0, the Var(ξ∆t ) is finite, and RV
∆
t

has the same long memory degree of IVt. On the other hand, the choice of ∆

impacts on the variance of ξ∆t and through this on the spectral density of RV ∆.

If we decrease ∆, this reduces the variability of ξ∆t due to the discretization but

increases the microstructure noise component, so that the net effect on Var(ξ∆t )

is unknown a priori. This trade-off, which depends on the choice of ∆, will be



Estimation of Long Memory in Integrated Variance 11

studied via simulations in Section 3.1.

3 Bias corrected estimation of long memory

in integrated variance

Now, we turn our attention to the estimation of the long memory parameter d

by means of periodogram-based estimators using a LW criterion function. It is

well known that the drawback of global long memory estimators is that they

require unnecessary assumptions on the spectral density. Instead, a consistent

estimate of d can be obtained simply by specifying the shape of the spectral

density at the origin. These methods are referred as local methods. Further, the

semiparametric approach has the advantage, over the parametric ones, that it

does not require a full specification of the dynamics of the process, but simply

characterization of the spectrum as λ → 0. This implies that semiparametric

estimation is more robust to the misspecification of the dynamics.

In our case, we are interested in the estimation of the long memory of IVt (or

σ2(t)), using the observations on RV ∆
t . According to Proposition 3, the spec-

trum of RV ∆
t for ∆ > 0 is that of IVt, plus an additional term, which depends

on the variance of the measurement error, see (37). This is a typical signal-plus-

noise problem. Consequently, the quality of the semiparametric estimate of d,

based on spectrum of RV ∆
t , can be dramatically affected in finite samples by

the variability of the measurement error. In a recent paper, Hansen and Lunde

(2010) note that, ”‘even with the most accurate estimators of daily volatility,

which can utilize thousands of high-frequency prices, the standard error for a

single estimate is rarely less than 10 %.”’

In this section, we discuss the effect of the variance of the measurement

error on the semiparametric estimates of d. A large literature, see among others

Deo and Hurvich (2001), Hurvich et al. (2005) and Haldrup and Nielsen (2007),

discusses the properties of the semiparametric long memory estimators, such as

the log-periodogram regression and the LW estimator, when the long memory
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signal is contaminated by a noise term.7 Deo and Hurvich (2001) show that the

Geweke and Porter-Hudak (1984) estimator is biased by a constant factor that

depends on the variance of the noise term. Sun and Phillips (2003) introduce an

additional nonlinear term in the log-periodogram regression, proportional to λ2d,

to account for the effect of the additive noise term, that is allowed to be weakly

dependent. Arteche (2004) suggests that an optimal choice of the bandwidth is

important to minimize the influence of the added noise term, since the variance

of the measurement error heavily restricts the allowable bandwidth in finite

samples. With a larger variance of the noise with respect to the signal, only

the frequencies very close to the origin contain a valuable information. Arteche

(2004) and Hurvich et al. (2005) show that, in the signal-plus-noise framework,

the LW estimator is consistent for d ∈ (0, 1) under general assumptions on the

noise term. However, in finite samples, the estimates are downward biased.

A possible solution to this problem is provided by Hurvich et al. (2005). They

consider a semiparametric specification of the spectral density, allowing also for

possible correlation between the noise and the signal. In particular, it is required

that the signal has an infinite moving average representation with mild conditions

on the coefficients. For example, when σ2(t) is generated by the process in (3),

a closed form expression of the spectral density of the signal, the IVt, is hard to

obtain. However, in this case IVt is a long memory stationary process which can

be approximated by an infinite moving average representation.8 The modified

LW objective function of Hurvich et al. (2005) is

Q(G, d, β)∗ =
1

m

m∑

j=1

{
ln

[
Gλ−2dj (1 + βλ2dj )

]
+
λ2dj IRV ∆(λj)

G(1 + βλ2dj )

}
, (19)

7In this Section, we will maintain the assumption that the noise term is dynamically uncorrelated
with the signal and it is a white noise. As shown in section 2.1, this is the relevant when drift in price
and leverage are excluded.

8Comte et al. (2010) analyze the affine fractional stochastic volatility models and characterize the
autocovariance function of the expected IVt process.
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where G is the spectrum at the origin.9 Concentrating G out, it yields

R(d, β) =
1

m

m∑

j=1

ln
(
λ−2dj (1 + βλ2dj )

)
+ ln


 1

m

m∑

j=1

λ2dj IRV ∆(λj)

(1 + βλ2dj )


 , (20)

where the LW estimator is obtained setting β = 0 in the minimization of R. The

LW estimates of d and β are

(d̂c, β̂) = arg min
(d,β)∈D×B

R̂(d, β) (21)

where D and B are the admissible sets of d and β, and m has to tend faster to

∞ than T 4d/(4d+1). In the case of RV , β̂ is interpreted as an estimate of the

noise-to-signal ratio,
Var(ξ∆

t
)

2πfIV (0)
. The corrected estimator is consistent for d ∈ (0, 1)

and asymptotically normal for d ∈ (0, 3/4) with asymptotic variance, in absence

of correlation between the signal and the noise, equal to (1+d)2

16d2·m
, which is a

decreasing function of d. It is interesting to note that, for all the admissible

values of d, the asymptotic variance of the bias-corrected LW estimator, d̂c, is

larger than the corresponding asymptotic variance of the LW estimator, d̂, that

is 1
4·m .

3.1 Simulations

In this section we present the results of the Monte Carlo analysis of the finite

sample properties of the long memory estimation of IVt based on RV ∆
t . We

want to investigate the impact that the measurement error has on the LW and

corrected LW estimators of the long memory of IVt, disentangling the contribu-

tion of the discretization error from that due to the microstructure noise. The

purpose is to evaluate if the corrected LW estimator provides superior perfor-

mances, in terms of bias for a large range of values of the noise-to-signal ratio

(nsr), and for different choices of ∆.

9Frederiksen et al. (2012) and Nielsen (2008) suggest to approximate the log-spectrum of the
short-memory component of the signal and of the perturbation by means of an even polynomial term.
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3.1.1 Setup

We consider two alternative setups for the generation of σ2(t). The first is

the stationary one presented in equation (3), which has been discussed so far.

However, given that there is some empirical evidence that the volatility may be

nonstationary, see for example Comte and Renault (1998) and Harvey (1998),

we also simulate σ2(t) from a nonstationary long memory process.

We assume that the log-price p(t) follows:

dp(t) = σ(t)dW (t) (22)

and the instantaneous volatility process σ2(t) is either:

d lnσ2(t) = k(ψ − lnσ2(t))dt+ γdWd(t) (23)

or

d lnσ2(t) = γdWd(t) (24)

where Wd is the fractional Brownian motion of order d independent of W (t).

To simulate increments from the fractional Brownian motion we implement the

Matlab routine by Yingchun Zhou and Stilian Stoev10 which is based on the

circulant embedding algorithm for the values of interest of the Hurst’s exponent,

H = d+ 1
2 .

The specification in (23) has a stationary solution, such that the long memory

is equal to d, while the one in (24) generates nonstationary volatility trajectories.

In fact, when γ > 0, in the neighborhood of γ = 0, the first order approxi-

mation of exp {γWd(t)} is 1+γWd(t), so that, following Solo (1992), the pseudo

spectral density of σ2(t) has a pole in zero which is proportional to λ−2δ, where

δ = 1 + d. Therefore, when d ∈ (−1/2, 0), then δ ∈ (12 , 1), so that σ2(t) is

a nonstationary (but ”‘mean reverting”’ ) long memory process. According to

Proposition 1, the IVt also has a pseudo spectral density proportional to λ
−2δ

at the origin and it is integrated of order δ > 1
2 . We will evaluate in simulation

10http://www.stat.lsa.umich.edu/ sstoev/code/ffgn.m
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if IVt has the expected long memory degree.

We simulate from the Euler approximation of (22), (23) and (24), a set

of discrete trajectories with a time step of 10 seconds for 6.5 hours per day,

which roughly corresponds to the trading period of NYSE. Thus we have a total

6 × 60 × 6.5 = 2, 160 log-prices and log-instantaneous volatilities per day for

2, 500 days, that is Yj = {pj , lnσ2j }
2,160×2,500
j=1 . The generated price series are

used to compute the RV series, with different ∆. Note that the computational

burden is due to the fact that we simulate for each Monte Carlo replication

a trajectory of Yj which has 5, 400, 000 observations. Therefore, we treat the

instantaneous volatilities generated at 10 seconds frequency as the true latent

process. We estimate the long memory parameter of the IVt, which is unobserved

in practice, but known in a simulation study and computed for the day t as

IVt =
∑2,160

k=1 σ2(t−1)·2,160+k for t = 1, . . . , 2.500. The estimate of the long memory

parameter of IVt is a natural benchmark for those based on RV ∆
t . Moreover,

when sampling prices at 10 seconds, and constructing the RV measure, RV all,

is equivalent to letting ∆ → 0. On the other hand, sampling at 1, 5, 10 and 30

minutes introduces the discretization error, mentioned in Section 2, which is the

consequence of the sparse sampling. Finally when prices are recorded with noise

and the sampling is at 1, 5, 10 and 30 minutes, then we have the joint effect of

microstructure noise and sparse sampling.

The market microstructure noise is introduced in the simulations in the form

of a bid-ask bounce, modeled as:

p̃(t) = p(t) +
ζ

2
1I(t) (25)

where ζ is the percentage spread, and the order-driven indicator variables 1I(t)

are independently across p and t and identically distributed with Pr{1I(t) =

1} = Pr{1I(t) = −1} = 1
2 . This variable takes value 1 when the transaction is

buyer-initiated, and −1 when it is seller-initiated. We adopt the simplest bid-ask

bounce specification in order to make a comparison with the existing literature.

Furthermore it is interesting to note that dp̃(t) exhibits spurious volatility and
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negative serial correlation, see for instance Nielsen and Frederiksen (2008). The

parameter of the bid-ask spread, ζ, is set according to the values found in Table

1 in Bandi and Russell (2006). We choose ζ = {0.000, 0.001, 0.002} which are

common values to the most liquid stocks. Similar values for ζ are also used in

Nielsen and Frederiksen (2008).

The two estimators of the long memory, the LW (d̂) and the corrected LW

(d̂c), are computed using the RV
∆
t series obtained at different sampling frequen-

cies, i.e. ∆ = 10 sec, 1 min, 5 min, 10 min and 30 min. In order to compare

their finite sample performances, we compute, for each sampling frequency, the

percentage relative bias from S Monte Carlo simulations

Bias(d̂) =
100

d

(
1

S

S∑

s=1

(d̂s − d)
)
, (26)

and the RMSE

RMSE(d̂) =

(
1

S

S∑

s=1

(d̂s − d)2
)1/2

. (27)

3.1.2 Noise-to-signal ratio

A crucial quantity in the simulations is the nsr,
Var(ξ∆

t
)

Var(IVt)
, which depends on the

generating process parameters, as discussed in Section 2.1. To figure out this

relationship, which obviously affects the simulation results, we use Monte Carlo

simulations, and plot the simulated nsr as a function of d, γ, ζ, and ∆. In this

way, we can choose a combination of the structural parameters that resembles

realistic values of the nsr, see for a discussion Meddahi (2002).

Figure 1(a) shows the simulated nsr for different choices of d and ∆. It is

evident that increasing ∆ increases, for each choice of d, the nsr, provided that

the microstructure noise is absent. For moderate choices of ∆, 1 or 5 minutes,

the impact of d on the nsr is rather limited.

When the nsr is plotted for different γ’s, Figure 1(b), it is clear that, for

a given ∆, as γ approaches 0, the innovation in the price process becomes the

prevailing source of variability, so that the nsr is shifted upwards. This is seen
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simply noting that,

Var(ξ∆t,i)

Var(σ2t,i,∆)
=

Var(ξ∆t,i)

E[(σ2t,i,∆)
2]− E[(σ2t,i,∆)]2

.

As γ → 0, then E[(σ2t,i,∆)
2] − E[(σ2t,i,∆)]

2 → 0, so that
Var(ξ∆

t
)

Var(IVt)
→ ∞, where ξ∆t,i

is defined in (35). The nsr is increasing in ∆, starting from 1 minute frequency,

while for 10 seconds the microstructure noise dominates.

In Figure 1(c), the nsr is plotted for different values of ζ, which is the bid-

ask spread. It is fairly evident that sampling at 10 seconds, introduces a large

microstructure noise such that the variance of the signal is totally dominated

by the noise term. For ζ = 0.001 and γ = 0.5, the nsr is equal to 1.95, when

∆ = 10 seconds, and is 1.36 for ∆ = 30 minutes.

3.1.3 Stationary instantaneous volatility

For the stationary case we report the results corresponding to the following set of

parameter values: k = 0.9, ψ = −9.2, γ = {0.5, 0.7} and d = 0.4. The parameter

ψ is the long-run mean of the log-volatility and ψ = −9.2 corresponds to an

annualized volatility of approximately 16%. This combination of parameters

generates a nsr which, in absence of microstructure noise, ranges between 2%

when ∆ = 1 minute, to 96% when ∆ = 30 minutes. When ∆ is 5 minutes, the

nsr is between 10% (γ = 0.7) and 20% (γ = 0.5), and is consistent with the

findings in Meddahi (2002).

Table 1 reports the percentage bias and RMSE of the estimated long memory

parameter when d = 0.4, obtained with the LW and the corrected LW estimators,

see (21), for different choices of ∆, γ and ζ. In both panels, the estimates of

d based on the IVt are, as expected, the closest to the true value, and the

percentage bias, smaller than 1%, is due to the Monte Carlo variance. However,

in the real world, IVt is unobservable and we rely on the realized measures

to conduct inference on the degree of long memory. When ζ = 0, the best

LW estimates of d are obtained using all available returns, while the largest
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(a) Noise-to-signal ratio, Var(ξ∆t )/Var(IVt), as a function

of ∆ ∈ (10sec, 30min), with γ = 0.5 and ζ = 0. Each

line corresponds to a different value of d, i.e., d =
{0, 0.1, 0.2, 0.3, 0.4, 0.45}.
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(b) Noise-to-signal ratio, Var(ξ∆t )/Var(IVt), as a function

of ∆ ∈ (10sec, 30min), with ζ = 0.001 and d = 0.4. Each

line corresponds to a different value of γ, i.e., γ =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
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(c) Noise-to-signal ratio, Var(ξ∆t )/Var(IVt), as function

of ∆ ∈ (10sec, 30min), with γ = 0.5 and d = 0.4.
Each line corresponds to a different ζ, i.e., ζ =
{0, 0.0005, 0.001, 0.0015, 0.0020, 0.0025}.

Figure 1: Simulated noise-to-signal ratio.
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negative biases are those obtained with RV 30. The negative bias becomes larger

as γ gets smaller, a result of the increase in the nsr ratio, displayed in Figure

1(b). This is coherent with the fact that the only source of noise in this case

is the discretization error, so that increasing the latter, produces more biased

estimates. When ζ = 0.001 or ζ = 0.002, the largest negative bias of LW is that

obtained with RV all (between -24% and -33%), while the bias of RV 30 is between

-13% and -18%. In presence of microstructure noise, the best LW estimates of

d are obtained sampling at 1 and 5 minutes, and the bias is approximately

−10%, so that the average of the Monte Carlo estimates is approximately 0.36.

Interestingly, correcting for the presence of the measurement error improves the

quality of the estimates, in terms of bias and RMSE, for any choice of ∆, and

the relevance of the correction becomes evident as ζ increases. It is noteworthy

that, despite the corrected LW estimator is asymptotically less efficient then the

LW estimator, the RMSE of d̂c is often smaller than that of d̂. This means that

the squared bias component of the RMSE prevails on the variance component,

thus confirming the relevance of correcting for the measurement error.

3.1.4 Nonstationary instantaneous volatility

The simulated trajectories for the nonstationary σ2(t) are obtained setting γ =

0.2 and d = {−0.3,−0.4}. This implies that the fractional integration order,

δ = 1+ d, of the instantaneous and IVt is 0.7 and 0.6, respectively. We initialize

each simulated path with p(0) = ln(100) and σ2(0) = exp(ψ) > 0. Figure 2

reports a simulated trajectory of the IVt under non-stationarity; it appears very

realistic and, in particular, the model is able to generate long periods of high

volatility which are typical of financial turmoils.

In the nonstationary setup, with δ = 0.6, the nsr ranges between 10% when

∆ = 1 minute, to 300% when ∆ = 30 minutes. With δ = 0.7, the nsr ranges

between 3% when ∆ = 1 minute, to 82% when ∆ = 30 minutes. The reduction

in the nsr obtained when δ = 0.7 is due to higher persistence of the signal. The

nsr corresponding to a ∆ equal to 5 minutes, is 15%.

A similar evidence to that found in the stationary case emerges also when
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the σ2(t) is long memory but nonstationary, which could be the relevant case in

practice, see Table 2. Firstly, the LW estimate, δ̂, based on IVt is very close to

the value δ = 1 + d, which is the same as that of σ2(t). This is in accordance

with Proposition 1, for long memory orders in the range (0, 1). When ζ = 0 and

γ = 0.2, the variance of the noise dominates the signal as ∆ increases, hence,

the impact of the discretization error on the LW estimates of δ is very large. For

example, when ζ = 0 and δ = 0.6, the bias of δ̂ based on RV 30 is negative and

larger than 30%, and larger than 18% when δ = 0.7.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3
x 10

−3

Figure 2: Nonstationary integrated variance. The figure plots a simulated trajectory
of IVt =

∫ t

t−1
σ2(s)ds which is generated according to model (24), with d = −0.3 and

γ = 0.2. σ2(0) = exp(−9.2).

As expected, the negative bias increases, as ζ increases, and we observe

extremely large negative biases for ζ = 0.002, so that δ̂, based on the RV , falls

in the stationary region, even though the IVt is not stationary. For example,

RV 5 has a negative bias equal to -28% when δ = 0.6, meaning that δ̂ ≈ 0.43

on average. On the contrary, the corrected LW estimator, δ̂c, provides unbiased

estimates also in the nonstationary region, for both δ = 0.6 and δ = 0.7, and for

all choices of ∆ and ζ.

3.1.5 Leverage

Finally, the last set of simulations, reported in Table 3, investigates the impact

on the estimates of d of the leverage effect, defined as the correlation between

the innovation in the volatility process and that in the price process. For the

stationary case the parameters are chosen as k = 0.9, ψ = −9.2, γ = 0.5, d = 0.4

and ρ = −0.3, where ρ = corr(dW (t),dWd(t)), while for the nonstationary case,
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they are γ = 0.2, d = −0.3 and ρ = −0.3. The value ρ = −0.3 is chosen according

to the findings in Andersen et al. (2002). Table 3 reports the simulation results

for the case in which the innovations of the volatility process are correlated

with the innovations of the price process (leverage effect). From Table 4(a)

it emerges that, for intermediate choices of ∆, the corrected LW estimator is

generally robust to the presence of correlation between the signal and the noise.

In particular, the correction works better for intermediate choices of ∆. This

indirectly confirms the finding in Meddahi (2002, p.493), that the correlation

between the IVt and the measurement error increases non-linearly with ∆, when

ρ 6= 0. In the stationary case, the correlation is always positive and it ranges

between 40% at 1 minute frequency and 60% at 30 minutes frequency. On

the contrary, in the nonstationary case, the leverage effect produces a negative

correlation that decreases with the sampling frequency, being -0.36% at 1 minute

and -0.19% at 30 minutes. In this case, Table 4(a) shows that the leverage effect

has a little impact on δ̂c, which is well centered on the true parameter value also

for large values of ∆, while the LW estimator performs as in the no-leverage

case.

Summarizing, the simulation results highlight the effectiveness, in terms of

bias reduction, of the corrected LW estimator of long memory of the IVt, even

when the volatility signal is nonstationary and in presence of leverage effect.

More importantly, the corrected estimator is robust to the choice of the sampling

frequency used for the computation of RV ∆
t . A recent paper by Arteche (2012)

proposes a modification of the Hurvich et al. (2005) estimator to account for

the possible correlation between signal and noise, which may emerge under the

presence of leverage. A detailed theoretical and empirical investigation of the

consequences of the leverage on the estimation of long memory in IV is left for

future research.
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4 Empirical Analysis

We estimate the long memory of IVt, based on the RV series of 28 stocks traded

on NYSE. The sample period ranges from January 2, 2001 to December 31, 2007,

for a total of 1760 trading days.11 The RV series are computed with alternative

sample frequencies, say 1 minute, 5 minutes, 10 minutes, 15 minutes and 30

minutes.

Table 4 reports the estimates of the long memory parameter d. The corrected

estimates signal that volatilities are generated by a nonstationary long memory

process. Firstly, on average, the estimates obtained correcting for the measure-

ment error are higher than those obtained with the LW estimator, which lies in

the stationary region. Secondly, the corrected estimates are relatively constant

with respect to the choice of the sampling frequency used for the computation

of the RV . Instead, the non corrected ones are characterized by a downward

trend with respect to ∆. The dispersion of the corrected estimates, as measured

by σ(d̂) and d̂1 − d̂30, is smaller than that observed for the LW estimates. This

evidence is clear from a visual inspection of Figure 3, which reports the long

memory signature plot for four stocks in the sample. The LW estimates based

on the RV series (dashed line) fall in most cases in the stationary region, while

it is evident the downward trend with respect to ∆. On the other hand, the

corrected estimates of d (solid line) are always above the Whittle estimates and

are constant across different choices of ∆, in line with the simulation results.

We think that it is important to stress the fact that the corrected LW estimator

always lies in the nonstationary region, suggesting that the volatility process

could be a nonstationary process. From this point of view, the fact that the LW

estimates of d, based on RV ∆
t , turn out to be less than 0.5, namely a stationary

long memory process, is mainly due to the role of the measurement error.

This means that using a biased long memory estimator leads to wrong conclu-

sions on the stationarity of the integrated and instantaneous volatility processes.

Using a similar argument, but in a discrete-time domain framework, Hansen and

11We avoid the possible upward bias in the semiparametric estimates of d, due to the presence of
large shifts as generated by changing bull and bear markets, during the 2008-2009 financial crisis.
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(a) RV of C

1min 5min 10min 15min 30min
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
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Figure 3: Long memory signature plots : Long memory parameter estimates for dif-
ferent sampling frequencies (1, 5, 10, 15 and 30 minutes). Dashed lines represent the
LW estimator of the memory parameter (obtained minimizing the function in (20)
concentrated with respect to G with β = 0). Solid lines represent the corrected LW
estimator (see (21)).)
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Lunde (2010) have proposed an instrumental variable estimator of the persis-

tence of the signal when the latter is a unit root process. To the best of our

knowledge, the consequences of a fractional, but nonstationary, volatility process

are not studied yet in the literature and the evidence reported here deserves a

more detailed analysis.

5 Conclusions

A stylized fact is that RV has long memory. In this paper, we investigate the

dynamic properties and the source of the long-range dependence of RV . First,

we find that, when the instantaneous volatility is driven by a fractional Brownian

motion, the IVt is characterized by the same degree of long-range dependence,

d. As a consequence, the RV inherits this property, since the spectral density

of RV is equal to the spectral density of IV , plus a term which depends on the

variance of the measurement error.

The additional term in the spectral density of RV impacts on the finite sam-

ple properties of the semiparametric estimates of d, since they crucially depend

on the use of RV in place of the unobservable IV . In absence of microstruc-

ture noise, the RV spectral density converges to the spectral density of IV , as

∆ → 0. When the presence of microstructure noise prevents us from using all

the available price observations, the additional component in the spectral den-

sity, which depends on the discretization error and on the microstructure noise,

significantly affects the finite sample bias of semiparametric estimates of d.

We adopt a correction of the LW estimator along the lines of Hurvich et al.

(2005). A Monte Carlo experiment confirms that the correction of the local

Whittle estimator is robust to the measurement error for all choices of ∆. Thus

the trade-off between discretization error and microstructure noise is neutralized

by adopting a corrected version of the LW estimator. Finally, the estimation of

the long memory of 28 NYSE stocks emphasizes the practical importance of

considering the measurement error when estimating the degree of long memory

of IV .
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The corrected estimates of d suggest that the IV and the instantaneous

volatility can be nonstationary processes. In this study we have not considered

the role of jumps in prices and their potential effect on the estimation of long

memory in IV . This is left for future research.
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A Proofs

A.1 Proof of Proposition 1

Given that IVt =
∫ t
t−1 σ̃

2(s)ds. Following Chambers (1996) we express the inte-

gral operator in the definition of IV as a simple filter that has transfer function

T (λ) =

∫ 1

0
e−iλudu =

1

(−iλ) [e
−iλ − 1].

Therefore the spectral density (or pseudo spectral density) of IV is given by

fIV (λ) = |T (λ)|2fσ2(λ). (28)

The limit of fIV (λ) for λ→ 0 is

lim
λ→0

fIV (λ) = lim
λ→0

[|T (λ)|2fσ2(λ)] (29)

Since |T (λ)|2 = 2(1−cos (λ))
|λ|2

and (1−cos (λ)) ≈ |λ|2/2 as λ→ 0, then limλ→0 |T (λ)|2 =

1. Thus,

lim
λ→0

λ2dfIV (λ) = lim
λ→0

λ2dfσ2(λ) = c, (30)

that is IV has the same degree of long memory of σ2(t), which is equivalent to

σ2(t).

A.2 Proof of Proposition 2

Assume that the processes for p(t) and RV ∆
t are those in (1) and (6). Assume

also that σ2(t) is such that condition (2) is verified, and that m(t) = µ and no

leverage effect, then

u∆t,i
L
= σ2t,i,∆

(
z2t,i − 1

)
+∆2µ2 + 2∆µσt,i,∆zt,i. (31)

It is easy to show that

(i) E(u∆t ) = ∆µ2;



Estimation of Long Memory in Integrated Variance 31

(ii) Var(u∆t ) = 2∆−1E
[
(σ2t,i,∆)

2
]
+ 4∆µ2E

[
σ2t,i,∆

]
;

(iii) u∆t is dynamically uncorrelated, i.e., Cov(u∆t , u
∆
t+h) = 0, for any integer

h 6= 0;

(iv) The error term u∆t is uncorrelated with IVt;

(v) Cov(RV ∆
t , RV ∆

t−h) = Cov(IVt, IVt−h), for any integer h 6= 0.

Thus, for ∆ > 0 and 0 < d < 1/2 the spectral density of RV ∆
t is given by

fRV ∆(λ) =
1

2π



Var(IVt) + Var(u∆t ) + 2

∞∑

j=1

[Cov(IVt, IVt−j) cos(λj)]





= fIV (λ) + fu∆(λ) (32)

When ∆ > 0 and 1/2 ≤ d < 1, the pseudo spectral density of RV ∆
t is given by

the expectation of its sample periodogram, i.e.

fRV ∆(λ) ≡ E(IRV ∆(λ)) = E(IIV +u∆(λ))

= E(IIV (λ)) + E(Iu∆(λ))

= fIV (λ) + fu∆(λ) (33)

where I·(λ) is the sample periodogram.

Therefore, for 0 < d < 1, limλ→0 λ
2dfRV ∆(λ) = limλ→0 λ

2d(fIV (λ)+fu∆(λ)) =

c with c > 0, where fu∆(λ) =
Var(u∆

t
)

2π .

Given that Var(u∆t ) converges to zero as ∆ → 0, so that fu∆(λ) → 0. This

implies that

lim
∆→0

fRV ∆(λ) = fIV (λ) (34)

the proof then follows from Proposition 1, and multiplying both sides by λ2d,

letting λ→ 0.

A.3 Proof of Proposition 3

Consider the processes p̃(t), RV ∆
t , ξ∆t defined respectively in (14), (6) and (16).

Let m(t) = µ and assume no leverage effect. Assume also that σ2(t) is such that
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condition (2) is verified. First, in order to characterize the spectral density of

RV ∆
t , we need to obtain the moments of the measurement error, ξ∆t =

∑n
i=1 ξ

∆
t,i.

(a) ξ∆t,i is defined as

ξ∆t,i
L
= σ2t,i,∆

(
z2t,i − 1

)
+∆2µ2+η2t,i,∆+2 (σt,i,∆zt,iηt,i,∆)+2∆µηt,i,∆+2∆µσt,i,∆zt,i,

(35)

hence

E
(
ξ∆t,i

)
= E

[
σ2t,i,∆

(
z2t,i − 1

)]
+ E

(
∆2µ2

)
+ E

(
η2t,i,∆

)

+2E (σt,i,∆zt,iηt,i,∆) + 2∆µE (ηt,i,∆) + 2∆µE (σt,i,∆zt,i)

= ∆2µ2 +E
(
η2t,i,∆

)

= ∆2µ2 + σ2η ,

where σ2η = Var[ηt,i,∆] = 2Var[ǫt,i,∆]. Because σt,i,∆, zt,i, and ηt,i,∆ are

mutually independent, E (σt,i,∆zt,iηt,i,∆) = E(σt,i,∆) ·E(zt,i) ·E(ηt,i,∆) = 0.

It follows that E
(∑n

i=1 ξ
∆
t,i

)
= ∆−1σ2η +∆µ2;

(b) The covariance between ξ∆t,i and ξ
∆
t,j can be written as

Cov
(
ξ∆t,i, ξ

∆
t,j

)
= E

[
u∆t,iu

∆
t,j

]
+ E

[
u∆t,iη

2
t,j,∆

]
+ 2E

[
u∆t,i (σt,j,∆zt,jηt,j,∆)

]

+2∆µE
[
u∆t,iηt,j,∆

]
+ 4∆µ [(σt,i,∆zt,iηt,i,∆) ηj ]

+E
[
η2t,i,∆u

∆
t,j

]
+ E

[
η2t,i,∆η

2
t,j,∆

]
+ 2E

[
η2t,i,∆ (σt,j,∆zt,jηt,j,∆)

]

+2E
[
(σt,i,∆zt,iηt,i,∆) u

∆
t,j

]
+ 2E

[
(σt,i,∆zt,iηt,i,∆) η

2
t,j

]

+4E [(σt,i,∆zt,iηt,i,∆) (σt,j,∆zt,jηt,j,∆)]

+2∆µ
[
ηt,i,∆η

2
t,j,∆

]
+ 2∆µ

[
η2t,i,∆ηt,j,∆

]
+ 2∆µ [ηt,i,∆ (σt,j,∆zt,jηt,j,∆)]

+2∆µE
[
ηt,i,∆u

∆
t,j

]
+ 4∆2µ2E [ηt,i,∆ηt,j,∆]− σ4η − 2∆2µ2σ2η −∆4µ4

= σ4η + 2∆2µ2σ2η +∆4µ4 − σ4η − 2∆2µ2σ2η −∆4µ4 = 0 ∀i 6= j
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The covariance of ξ∆t and ξ∆t+h is equal to

Cov




n∑

i=1

ξ∆t,i,

n∑

j=1

ξ∆t+h,j


 =

n∑

i=1

n∑

j=1

Cov
(
ξ∆t,i, ξ

∆
t+h,j

)
= 2n2·0 = 0 for any integer h 6= 0.

(36)

(c) The variance of ξ∆t,i is,

Var
(
ξ∆t,i

)
= Var(u∆t,i) + Var(η2t,i) + 4Var (σt,i,∆zt,iηt,i,∆) + 4∆2µ2Var(ηt,i)

= 2E
[
(σ2t,i,∆)

2
]
+ 4∆2µ2E

[
σ2t,i,∆

]
+ E(η4t,i,∆)− σ4η + 4σ2ηE

[
σ2t,i,∆

]
+ 4∆2µ2σ2η,

it follows that the variance of ξ∆t is

Var
(
ξ∆t

)
= Var

(
n∑

i=1

ξ∆t,i

)
=

n∑

i=1

Var
(
ξ∆t,i

)

= 2∆−1E
[
(σ2t,i,∆)

2
]
+ 4∆µ2E

[
(σ2t,i,∆)

2
]
+∆−1(E(η4t,i,∆)− σ4η)

+4∆−1σ2ηE
[
σ2t,i,∆

]
+ 4∆µ2σ2η (37)

i. For ∆ > 0 and 0 < d < 1/2, the spectral density of RV ∆
t is therefore given

by:

fRV ∆(λ) =
1

2π



Var(IVt) + Var(ξ∆t ) + 2

∞∑

j=1

[Cov(IVt, IVt−j) cos(λj)]





= fIV (λ) + fξ∆(λ).

When ∆ > 0 and 1/2 ≤ d < 1, the pseudo spectral density of RV ∆
t is given

by the expectation of the sample periodogram of RV , i.e.

fRV ∆(λ) ≡ E(IRV ∆(λ)) = E(IIV +ξ∆(λ))

= E(IIV (λ)) + E(Iξ∆(λ))

= fIV (λ) + fξ∆(λ) (38)

The proof then follows from Proposition 1, and multiplying both sides by

λ2d, letting λ→ 0.

ii. It is evident that when ∆→ 0, Var
(
ξ∆t

)
→∞, so that fRV ∆(λ)→∞ ∀λ.
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