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Abstract

A stylized fact is that realized variance has long memory. We show that, when
the instantaneous volatility is a long memory process of order d, the integrated
variance is characterized by the same long-range dependence. We prove that the
spectral density of realized variance is given by the sum of the spectral density
of the integrated variance plus that of a measurement error, due to the sparse
sampling and market microstructure noise. Hence, the realized volatility has
the same degree of long memory as the integrated variance. The additional
term in the spectral density induces a finite-sample bias in the semiparametric
estimates of the long memory. A Monte Carlo simulation provides evidence that
the corrected local Whittle estimator of Hurvich et al. (2005) is much less biased
than the standard local Whittle estimator and the empirical application shows
that it is robust to the choice of the sampling frequency used to compute the
realized variance. Finally, the empirical results suggest that the volatility series
are more likely to be generated by a nonstationary fractional process.
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1 Introduction

A well documented stylized fact is that the volatility of the financial returns
is characterized by long-range dependence, or long memory, see, for instance,
Baillie (1996), Bollerslev and Mikkelsen (1996), Dacorogna et al. (1993), Ding
et al. (1993), Granger and Ding (1996). More recently Andersen et al. (2001a),
Andersen et al. (2001b), Andersen et al. (2003), Martens et al. (2009) report
evidence of stationary long memory in the realized variance (or realized volatility,
RV) series.

In this paper, we theoretically study the long memory properties of the inte-
grated variance (IV) and RV, assuming that the instantaneous volatility, o (t),
is characterized by long memory of order d.

The contributions of this paper are threefold. Firstly, we demonstrate that
IV has the same fractional integration order of o(t), since it has a pole at the
zero frequencies that depends on the long memory parameter, d. This result
holds for both stationary and nonstationary long memory stochastic volatility
models. Secondly, we show that when we consider sparse sampling and the pres-
ence of market microstructure noise, see Bandi and Russell (2008), Hansen and
Lunde (2006) and for a recent survey McAleer and Medeiros (2008), the spectral
density of RV is given by the spectral density of IV plus an additional constant
term, which depends on the variance of the measurement error term. Therefore,
RV is also a long-range dependent process and it has the same long memory of
IV and o?(t). Moreover, in absence of microstructure noise, the spectral density
of RV converges to that of IV, as the sampling frequency increases.

Thirdly, we show by simulation that the local Whittle (LW) estimator of
the long memory parameter is biased in finite samples as a consequence of the
presence of the measurement error in the spectral density of RV. In the context
of our signal plus noise model, an alternative choice to the LW estimator is the
corrected LW estimator of Hurvich et al. (2005), that explicitly accounts for the
presence of the measurement error. We evaluate the impact that the choice of
the sampling frequency and the variance of the measurement error have on the

finite sample bias and the variability of both estimators. The results highlight
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the dramatic reduction of the finite-sample bias of the corrected LW estimator
with respect to the standard LW estimator.

The effectiveness of corrected LW estimator is also evident from the estimates
of the degree of long memory of the volatility of 28 stocks traded on the NYSE.
The results obtained with RV at different sampling frequencies confirm the
robustness of the corrected LW estimator to the presence of the measurement
error, unlike the LW estimator, which is affected by the choice of the sampling
frequency since this impacts on the variance of the measurement error. Indeed,
the LW estimates decrease as the sampling frequency is getting smaller. The
corrected LW estimates are not only larger than the uncorrected ones, but also
rather constant with respect to the sampling frequency. This is particularly
evident from the long memory signature plot of the RV, namely the plot of
the long memory estimates obtained with RV at different sampling frequencies.
The corrected estimates are always larger than 1/2, which is the upper bound
of the stationary region. These results suggest that a deeper analysis of the
nonstationary volatility models is called for.

This paper is organized as follows. In Section 2 we show that, when the
instantaneous volatility is driven by a fractional Brownian motion, the degree
of fractional integration of the IV process is the same as the instantaneous
volatility. Section 2.1 illustrates the characteristics of the measurement error.
Section 3 discusses the semiparametric techinque to obtain unbiased estimates
of the long memory parameter of IV, based on a careful characterization of the
spectral density of the realized variance. In Section 3.1 the results of the Monte
Carlo simulations are illustrated and discussed. Section 4 compares the results
obtained with the corrected and the uncorrected estimators of long memory,

based on RV estimated on the real data. Section 5 concludes.
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2 Long memory in integrated and realized

variance: theoretical results

Let P(t) be the price of an asset, where its logarithm, p(t), follows the stochastic
differential equation:

dp(t) = m(t)dt + o (t)dW (¢) (1)

where W (t) is a standard Brownian motion and m(t) is locally bounded and pre-
dictable. o(t) is assumed to be independent of W (¢) and cadlag, see Barndorff-
Nielsen and Shephard (2002a,b). Moreover, it is assumed that o?(t) is a long

memory process, such that
fr2(N) ~eXd™2 as A =0 (2)

where ¢ € R, and f, () is the spectral density of o%(¢). When 0 < d < 1/2, the
process o2 (t) is stationary, while when 1/2 < d < 1, the process o2(t) is non-
stationary, see Solo (1992), Velasco (1999a,b), Hurvich and Ray (1995, 2003)
and Hurvich et al. (2005). In the nonstationary long memory case, the spectral
density is not defined and it is replaced by the so called pseudo spectral density,
which is the limit of the expectation of the sample periodogram. As noted by
Hurvich and Ray (2003), the pseudo-spectral density plays a similar role as the
ordinary spectral density in determining the properties of the periodogram, when
d > 1/2, see also Hurvich et al. (2005, p.1288).

An example of a stationary long memory process for o2(t) that satisfies
condition (2) is the fractional Ornstein-Uhlenbeck process of Comte and Renault
(1998):

dlno?(t) = —klno?(t)dt + ydWy(t) (3)

where k > 0 is the drift parameter, while v > 0 is the volatility parameter and
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Wy(t) is the fractional Brownian motion (fBm), which is defined! as

t 0
Wilt) = gy | =AW+ [ (== () haw) @

—00

The solution of (3) can be written as Ino?(t) = fot e k(t=9)y AWy (s). In particu-
lar, for 0 < d < 1/2, Comte (1996) and Comte and Renault (1998) show that the
process In o2(t) has long memory of order d, if ko, = vd/k is finite and different
from zero. Comte and Renault (1998) show that, when k& > 0, the volatility
process o2(t) is asymptotically equivalent (in quadratic mean) to the stationary

process2:

¢
1
&2 (t) = exp (/ e_k(t_“)'yde(u)> , E>0 0<d< 5 (5)

They prove that the spectral density, f;2(\), of the process 62(t), is proportional
to A72% as A — 0, so that the volatility process inherits the long-memory property
induced by the fBm. More recently, Comte et al. (2010) show that also the class
of affine fractional stochastic volatility models, satisfies condition (2).

In the following proposition, we show that the I'V has the same long memory

degree of the instantaneous volatility.

Proposition 1 Assuming that o?(t) has a spectral density (or pseudo spectral
density) that admits the representation in (2) around 0, then limy_so A2? fri/(\) =
c € Ry where fry(N) is the spectral density (or pseudo spectral density) of IV, =
ftt—l o?(u)du.

It is interesting to note that this result is proved under the assumption that o ()
has a spectral density (or pesudo spectral density) proportional to 2724 at the
origin as in (2). As a consequence of Proposition (1), at the origin the spectral
density (or pseudo spectral density) of the IV has the same behavior as that of
the instantaneous volatility, so that IV has the same degree of long memory as

o2(t). This result holds for stationary and nonstationary long memory instan-

!The literature on long memory processes in econometrics distinguishes between type I and type
IT fractional Brownian motion. These processes have been carefully examined and contrasted by
Marinucci and Robinson (1999) and Davidson and Hashimzade (2009).

2The volatility process o2(t) coincides almost surely with 52 (t).
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taneous volatilities. Strictly speaking, finding a degree of long memory of IV
larger than 1/2 implies an instantaneous volatility of the same fractional order.
Although a model specification for the instantaneous volatility that allows for
nonstationary long memory is potentially interesting and empirically relevant,
nonstationary long memory continuous time stochastic volatility models are not
yet investigated in literature.® In Section 3.1, we propose a nonstationary long
memory process for the instantaneous volatility, and we study by simulations the
consequences of nonstationarity on the long memory of IV. In the next section,
we analyze how the presence of long memory in the I'V translates in long-range

dependence of the RV'.

2.1 The measurement error

In this section we characterize the measurement error associated with the RV
estimator. To simplify the notation, we consider an equidistant partition 0 =
to <tp <...<t, =1, where t; = i/n, and A = 1/n, that is the interval is
normalized to have unit length. Define 7; A = pia A — pi—1)a,a- Adopting the

notation of Hansen and Lunde (2005), the RV at sampling frequency A is

RVA = ’I"iZ,A (6)
i=1

and Barndorff-Nielsen and Shephard (2002b) derived a distribution theory for
RVA when n — o0,

Vr(RVA — 1v) & N(0,21Q),

where 1Q) = fol o*(u)du is the integrated quarticity. In this paper we focus
on the series of non-overlapping IV, {IV,}_,, where [0,T] represents our sam-
pling period. Further, the time series of non-overlapping RV is composed by
{RVtA =i T?,i,A}thlv where 745 A = Pr—14ia,A — Pe—14(i—1)a,a- We are in-

terested in the estimation of the long memory of IV, using the observations on

3For example, the estimates of long memory presented in Comte and Renault (1998) are larger
than 1/2.

“In order to obtain non-overlapping RV;*’s the first return included in the computation of RV;*
IS Tt2 A = Dt—112A,A — Dt—1+4A,A-
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RVA.

2.1.1 No Noise Case

Barndorff-Nielsen and Shephard (2002b) and Meddahi (2002) characterize the
discretization error, when RV is used to measure the IV. While RV converges
to IV when A — 0, the difference may be not negligible for a given A > 0.
Following Barndorff-Nielsen and Shephard (2002b) and Meddahi (2002), we can

decompose RVtA, for a given A, as
RVA = IV, +ub. (7)
with the discretization error equal to

n
up =iy, (8)
i=1
where ufi = 7}2, N 0,527 N is the discretization error in th i-th subinterval, with
afﬂ-? A= tt:lljéél) A 0%(u)du. When the drift m(t) is non-zero, Meddahi (2002)
proves that u#* has a non-zero mean. Furthermore, as pointed out by Barndorff-
Nielsen and Shephard (2002b) and Meddahi (2002), the correlation between the
IV; and the noise term is zero when there is no leverage effect, that is dIW in (1)
and dW, in (3) are uncorrelated processes.

In the next Proposition we characterize the properties of the spectral density

of RVA.

Proposition 2 Consider the processes for p(t) and RV;> defined in (1) and
(6). Assume that condition (2) holds for o*(t). Let m(t) = pu and assume no
leverage effect, p = corr(dW (t),dWy(t)) = 0,
i. For A > 0, the spectral density (or pseudo spectral density) of RV;A 18
given by
frva(A) = frv(A) + fua(N) (9)

and limy_,o A** frya (A) = limy 0 A24(frv(A) + fua(N) = c.
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ii. When A — 0, Var(uf) — 0, then

iiino frva(\) = frv(N). (10)
And
i | i s (0] = Jim 4 () = (11)

For a given A > 0, the spectral density (or pseudo spectral density) of RV,*
is equal to that of IV; plus an additional term which depends on the variance
of utA. This means that RV}A has the same degree of long memory of IV} since
fur(A) = %ﬁ:?) is constant with respect to A. In the ideal situation where prices
are recorded continuously (A — 0), the spectral density of RV/> converges to
that of the IV; and, again, they share the same degree of long memory. It should
be noted that the results in Proposition 2 extend to any stochastic volatility
process for which the spectral density (or the pseudo spectral density) of IV}
exists. Note that the results in (9) and (11) are valid when m(t) = p # 0 in
(1), since the discretization error remains an uncorrelated process. However, in
this case, a closed from expression for Var[u£] becomes more involved than that
provided by Barndorff-Nielsen and Shephard (2002a), because it depends also
on m(t).?

For example, when the instantaneous volatility follows the process in (3) and

m(t) = 0, as in Barndorff-Nielsen and Shephard (2002a, p.257), the Var|[u]

term is equal to

Var[u?] = 2A71. {2 Var[52(t)] - /A /Ur(u)dudv + A2E[62(t)]2} . (12)
o Jo

where
w2
B0 = o () Vals 0] = o) - e () (13)
with w? = Var[lno?(t)] = FQ(Hd)kﬁ’;d oy €€ Casas and Gao (2008), and

®Meddahi (2002) derives a closed form expression for Var[u£] for the class of eigenfunction stochas-
tic volatility models and assuming that m(t) = p.
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7(-) denotes the autocorrelation function of the process 62(t). It is clear that
the parameters in (3) affect E[6%(t)] , Var[52(t)], and Cov(62(t+h),52(t)), and,
through these, impact on the variance of the discretization error. It is hard to
obtain closed-form expressions for the partial derivatives of Var[uf] w.r.t. the
parameters in (3), thus we investigate this point by simulations in Section 3.1.

Differently from discrete-time stochastic volatility framework, where the vari-
ance of the measurement error is unrelated to the volatility parameters, in this
setup the variance of the discretization error is a highly non-linear function of
the instantaneous volatility process parameters. In the next section, we will
characterize the measurement error and the spectral density of RVtA when the

prices are contaminated by the microstructure noise.

2.1.2 Microstructure Noise Case

Suppose now that the intradaily price is observed with error, due to the presence

of microstructure noise,

p(t) = p(t) +€(t) (14)

where p(t) is the latent true, or efficient, price process that follows (1). The term
€(t) is the noise around the true price, with mean 0 and finite fourth moment.
In particular, €(t) is 4.i.d. and it is independent of the efficient price and the true

return process. Over periods of length A, we have

Tti A = (ptflJrz'A,A — Pt—1+(i—1)A,A) + (erin — €ti-1,A) =Ttin + Nein.  (15)

With discretization and microstructure noise, and m(t) = p, the measurement

error of RVtA is given by
n n n
= up + ) Mia T2 D otiaziia | +280) neia. (16)
i=1 j=1 j=1

As noted by Bandi and Russell (2006), while the efficient return is of order

O,(V/A), the microstructure noise is of order O,(1) over any period of time.

5The double integral in (12) can only be approximated for A — 0.
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This means, that, when A — 0, the microstructure noise dominates over the
true return process, and longer period returns are less contaminated by the

noise than shorter period returns. Given the properties of €(t), then

Proposition 3 Consider the processes for p(t), p(t) and RVtA defined respec-
twely in (1), (14) and (6). Let m(t) = p and assume no leverage effect,
p = corr(dW (t),dWy(t)) =0,

i. For A >0,

Trva(A) = frv(N) + fea(N) (17)
where fea(N) = Var2(7§$) is the spectral density of the measurement error
term. It follows that

lim N frya(N) =, (18)

with ¢ > 0.

ii. For A — 0, Var(£2) — oo and the frya(A) — oo, VA.

Proposition 3 extends the results of Proposition 2, namely RV;> is character-
ized by the same degree of long memory of the IV; even when the microstructure
noise is present and A > 0. When prices are observed with a microstructure
noise, the long memory signal, I'V;, turns out to be contaminated by a measure-
ment error, whose variance is given by the sum of two components: the variance
of the discretization error Var(uf), and the term due to the presence of the mi-
crostructure noise, which is given by Afl(E(nﬁi?A) —op) +40.ATE [a§i7A] +
4A,u20'%, see (37) in Appendix A.3. In accordance with Proposition 3, the effect
of the microstructure noise on the variance of §tA, diverges as A — 0, see Bandi
and Russell (2006), and dominates the long memory signal which cannot be
identified anymore. However, for a given A > 0, the Var(¢2) is finite, and RV,A
has the same long memory degree of I'V;. On the other hand, the choice of A
impacts on the variance of ¢ and through this on the spectral density of RV 2.
If we decrease A, this reduces the variability of £ due to the discretization but
increases the microstructure noise component, so that the net effect on Var(&5)

is unknown a priori. This trade-off, which depends on the choice of A, will be

10
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studied via simulations in Section 3.1.

3 Bias corrected estimation of long memory

in integrated variance

Now, we turn our attention to the estimation of the long memory parameter d
by means of periodogram-based estimators using a LW criterion function. It is
well known that the drawback of global long memory estimators is that they
require unnecessary assumptions on the spectral density. Instead, a consistent
estimate of d can be obtained simply by specifying the shape of the spectral
density at the origin. These methods are referred as local methods. Further, the
semiparametric approach has the advantage, over the parametric ones, that it
does not require a full specification of the dynamics of the process, but simply
characterization of the spectrum as A — 0. This implies that semiparametric
estimation is more robust to the misspecification of the dynamics.

In our case, we are interested in the estimation of the long memory of I'V; (or
02(t)), using the observations on RV,*. According to Proposition 3, the spec-
trum of RVtA for A > 0 is that of IV}, plus an additional term, which depends
on the variance of the measurement error, see (37). This is a typical signal-plus-
noise problem. Consequently, the quality of the semiparametric estimate of d,
based on spectrum of RVtA, can be dramatically affected in finite samples by
the variability of the measurement error. In a recent paper, Hansen and Lunde
(2010) note that, "‘even with the most accurate estimators of daily volatility,
which can utilize thousands of high-frequency prices, the standard error for a
single estimate is rarely less than 10 %.”’

In this section, we discuss the effect of the variance of the measurement
error on the semiparametric estimates of d. A large literature, see among others
Deo and Hurvich (2001), Hurvich et al. (2005) and Haldrup and Nielsen (2007),
discusses the properties of the semiparametric long memory estimators, such as

the log-periodogram regression and the LW estimator, when the long memory

11
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signal is contaminated by a noise term.” Deo and Hurvich (2001) show that the
Geweke and Porter-Hudak (1984) estimator is biased by a constant factor that
depends on the variance of the noise term. Sun and Phillips (2003) introduce an
additional nonlinear term in the log-periodogram regression, proportional to A\2?,
to account for the effect of the additive noise term, that is allowed to be weakly
dependent. Arteche (2004) suggests that an optimal choice of the bandwidth is
important to minimize the influence of the added noise term, since the variance
of the measurement error heavily restricts the allowable bandwidth in finite
samples. With a larger variance of the noise with respect to the signal, only
the frequencies very close to the origin contain a valuable information. Arteche
(2004) and Hurvich et al. (2005) show that, in the signal-plus-noise framework,
the LW estimator is consistent for d € (0,1) under general assumptions on the
noise term. However, in finite samples, the estimates are downward biased.

A possible solution to this problem is provided by Hurvich et al. (2005). They
consider a semiparametric specification of the spectral density, allowing also for
possible correlation between the noise and the signal. In particular, it is required
that the signal has an infinite moving average representation with mild conditions
on the coefficients. For example, when o2(t) is generated by the process in (3),
a closed form expression of the spectral density of the signal, the IV;, is hard to
obtain. However, in this case IV} is a long memory stationary process which can
be approximated by an infinite moving average representation.® The modified

LW objective function of Hurvich et al. (2005) is

m

QG5 = > I G721+ g3t + X s () (19)
sty mj:l J J G(l—{—ﬁ)\?d) ’

"In this Section, we will maintain the assumption that the noise term is dynamically uncorrelated
with the signal and it is a white noise. As shown in section 2.1, this is the relevant when drift in price
and leverage are excluded.

8Comte et al. (2010) analyze the affine fractional stochastic volatility models and characterize the
autocovariance function of the expected I'V; process.
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where G is the spectrum at the origin.? Concentrating G out, it yields

m )\Qd

R(d, B) Zln ()\ 20(1 4 gA2) ) +In Z i

Tpya(X))

Feoan | @

where the LW estimator is obtained setting 8 = 0 in the minimization of R. The

LW estimates of d and 3 are

A~

(de, B) = arg (dé?eiﬂr)}w R(d, B) (21)

where D and B are the admissible sets of d and 3, and m has to tend faster to

oo than 744/(44+1) - Tp the case of RV, B is interpreted as an estimate of the

Var(€2) " . iy
s 5 fIVt(O) . The corrected estimator is consistent for d € (0, 1)

noise-to-signal ratio

and asymptotically normal for d € (0,3/4) with asymptotic variance, in absence

(14+d)?
16d2-m

of correlation between the signal and the noise, equal to , which is a

decreasing function of d. It is interesting to note that, for all the admissible
values of d, the asymptotic variance of the bias-corrected LW estimator, CZC, is
larger than the corresponding asymptotic variance of the LW estimator, cz, that
is .

4-m

3.1 Simulations

In this section we present the results of the Monte Carlo analysis of the finite
sample properties of the long memory estimation of I'V; based on RV;A. We
want to investigate the impact that the measurement error has on the LW and
corrected LW estimators of the long memory of I'V;, disentangling the contribu-
tion of the discretization error from that due to the microstructure noise. The
purpose is to evaluate if the corrected LW estimator provides superior perfor-
mances, in terms of bias for a large range of values of the noise-to-signal ratio

(nsr), and for different choices of A.

9Frederiksen et al. (2012) and Nielsen (2008) suggest to approximate the log-spectrum of the
short-memory component of the signal and of the perturbation by means of an even polynomial term.



Estimation of Long Memory in Integrated Variance

3.1.1 Setup

We consider two alternative setups for the generation of o2(t). The first is
the stationary one presented in equation (3), which has been discussed so far.
However, given that there is some empirical evidence that the volatility may be
nonstationary, see for example Comte and Renault (1998) and Harvey (1998),
we also simulate o%(¢) from a nonstationary long memory process.

We assume that the log-price p(t) follows:

dp(t) = o(t)dW (1) (22)

and the instantaneous volatility process () is either:

dIno?(t) = k(¢ — Ino?(t))dt + ydWy(t) (23)

or

dlno?(t) = ydWy(t) (24)

where W, is the fractional Brownian motion of order d independent of W (t).
To simulate increments from the fractional Brownian motion we implement the
Matlab routine by Yingchun Zhou and Stilian Stoev!? which is based on the
circulant embedding algorithm for the values of interest of the Hurst’s exponent,
H=d+3.

The specification in (23) has a stationary solution, such that the long memory
is equal to d, while the one in (24) generates nonstationary volatility trajectories.

In fact, when v > 0, in the neighborhood of v = 0, the first order approxi-
mation of exp {yWy(t)} is 1 +~yWy(¢), so that, following Solo (1992), the pseudo
spectral density of o%(¢) has a pole in zero which is proportional to A2 where
§ = 1+ d. Therefore, when d € (—1/2,0), then § € (3,1), so that o2(t) is
a nonstationary (but ”‘mean reverting”’) long memory process. According to
Proposition 1, the I'V; also has a pseudo spectral density proportional to =29

at the origin and it is integrated of order § > % We will evaluate in simulation

Ohttp: / /www.stat.lsa.umich.edu/ sstoev/code/ffgn.m
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if IV; has the expected long memory degree.

We simulate from the Euler approximation of (22), (23) and (24), a set
of discrete trajectories with a time step of 10 seconds for 6.5 hours per day,
which roughly corresponds to the trading period of NYSE. Thus we have a total
6 x 60 x 6.5 = 2,160 log-prices and log-instantaneous volatilities per day for
2,500 days, that is Y; = {p;,In 02}2 160x2,500 e generated price series are
used to compute the RV series, with different A. Note that the computational
burden is due to the fact that we simulate for each Monte Carlo replication
a trajectory of Y; which has 5,400,000 observations. Therefore, we treat the
instantaneous volatilities generated at 10 seconds frequency as the true latent
process. We estimate the long memory parameter of the IV;, which is unobserved
in practice, but known in a simulation study and computed for the day t as
1V, = Zi 1610 azt 1)-2,160-+k fort =1,...,2.500. The estimate of the long memory
parameter of I'V; is a natural benchmark for those based on RV;”. Moreover,
when sampling prices at 10 seconds, and constructing the RV measure, RV,
is equivalent to letting A — 0. On the other hand, sampling at 1, 5, 10 and 30
minutes introduces the discretization error, mentioned in Section 2, which is the
consequence of the sparse sampling. Finally when prices are recorded with noise
and the sampling is at 1, 5, 10 and 30 minutes, then we have the joint effect of
microstructure noise and sparse sampling.

The market microstructure noise is introduced in the simulations in the form

of a bid-ask bounce, modeled as:

~ ¢
B(t) = p(t) + 1) (2)
where ( is the percentage spread, and the order-driven indicator variables 1(t)
are independently across p and ¢ and identically distributed with Pr{l(t) =
1} = Pr{li(t) = —1} = i. This variable takes value 1 when the transaction is
buyer-initiated, and —1 when it is seller-initiated. We adopt the simplest bid-ask

bounce specification in order to make a comparison with the existing literature.

Furthermore it is interesting to note that dp(t) exhibits spurious volatility and

15
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negative serial correlation, see for instance Nielsen and Frederiksen (2008). The
parameter of the bid-ask spread, (, is set according to the values found in Table
1 in Bandi and Russell (2006). We choose ¢ = {0.000,0.001,0.002} which are
common values to the most liquid stocks. Similar values for ¢ are also used in
Nielsen and Frederiksen (2008).

The two estimators of the long memory, the LW (CZ) and the corrected LW
(CZC), are computed using the RV, series obtained at different sampling frequen-
cies, i.e. A = 10 sec, 1 min, 5 min, 10 min and 30 min. In order to compare
their finite sample performances, we compute, for each sampling frequency, the

percentage relative bias from S Monte Carlo simulations

S
.5 100 (1
Bias(d) = — <§ g > (26)
and the RMSE

) g 1/2
RMSE(d (52 (ds — d) ) . (27)

3.1.2 Noise-to-signal ratio

Var({t )
? Var(IVi)’

A crucial quantity in the simulations is the nsr which depends on the
generating process parameters, as discussed in Section 2.1. To figure out this
relationship, which obviously affects the simulation results, we use Monte Carlo
simulations, and plot the simulated nsr as a function of d, v, ¢, and A. In this
way, we can choose a combination of the structural parameters that resembles
realistic values of the nsr, see for a discussion Meddahi (2002).

Figure 1(a) shows the simulated nsr for different choices of d and A. It is
evident that increasing A increases, for each choice of d, the nsr, provided that
the microstructure noise is absent. For moderate choices of A, 1 or 5 minutes,
the impact of d on the nsr is rather limited.

When the nsr is plotted for different +’s, Figure 1(b), it is clear that, for

a given A, as v approaches 0, the innovation in the price process becomes the

prevailing source of variability, so that the nsr is shifted upwards. This is seen
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simply noting that,

Var(ffi) B Var({tﬁ-)
Var(UtQ,z‘,A) a E[(ng‘,Am - E[(UtQ,z‘,A)P.

Var(£2)
Var(IV;)

As vy = 0, then E[(07; A)?] = E[(c7; A)]> = 0, so that — 00, where ffi
is defined in (35). The nsr is increasing in A, starting from 1 minute frequency,
while for 10 seconds the microstructure noise dominates.

In Figure 1(c), the nsr is plotted for different values of ¢, which is the bid-
ask spread. It is fairly evident that sampling at 10 seconds, introduces a large
microstructure noise such that the variance of the signal is totally dominated

by the noise term. For ¢ = 0.001 and v = 0.5, the nsr is equal to 1.95, when

A = 10 seconds, and is 1.36 for A = 30 minutes.

3.1.3 Stationary instantaneous volatility

For the stationary case we report the results corresponding to the following set of
parameter values: k = 0.9, ¥ = —9.2, v = {0.5,0.7} and d = 0.4. The parameter
1 is the long-run mean of the log-volatility and ¢ = —9.2 corresponds to an
annualized volatility of approximately 16%. This combination of parameters
generates a nsr which, in absence of microstructure noise, ranges between 2%
when A = 1 minute, to 96% when A = 30 minutes. When A is 5 minutes, the
nsr is between 10% (y = 0.7) and 20% (y = 0.5), and is consistent with the
findings in Meddahi (2002).

Table 1 reports the percentage bias and RMSE of the estimated long memory
parameter when d = 0.4, obtained with the LW and the corrected LW estimators,
see (21), for different choices of A, v and (. In both panels, the estimates of
d based on the IV; are, as expected, the closest to the true value, and the
percentage bias, smaller than 1%, is due to the Monte Carlo variance. However,
in the real world, IV, is unobservable and we rely on the realized measures
to conduct inference on the degree of long memory. When ¢ = 0, the best

LW estimates of d are obtained using all available returns, while the largest
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mnsi
-mens o, ,
141 nsr B
=W =NST402 U

MSMam03
12p|=m=nsry g, R

NST4=0.45

0 I
10 sec 1min 5 min 10 min 30 min
A

(a) NOISE-TO-SIGNAL RATIO, Var(¢2)/ Var(IV;), AS A FUNCTION
OoF A € (10sec,30min), wiTH v = 0.5 AND ¢ = 0. EAacH
LINE CORRESPONDS TO A DIFFERENT VALUE OF d, LE., d =
{0,0.1,0.2,0.3,0.4,0.45}.

(b) NOISE-TO-SIGNAL RATIO, Var(¢2)/ Var(IV;), AS A FUNCTION
oF A € (10sec,30min), wiTH ¢ = 0.001 AND d = 0.4. EAcCH
LINE CORRESPONDS TO A DIFFERENT VALUE OF 7, LE., 7 =
{0.1,0.2,0.3,0.4,0.5,0.6}.

10'sec 1 min 5min 10 min 30 min
A

(c) NOISE-TO-SIGNAL RATIO, Var(¢2)/Var(IVi), AS FUNCTION
OoF A € (10sec,30min), WITH v = 05 AND d = 04.
EACH LINE CORRESPONDS TO A DIFFERENT (, LE., ( =
{0,0.0005, 0.001, 0.0015, 0.0020, 0.0025}.

Figure 1: Simulated noise-to-signal ratio.
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negative biases are those obtained with RV3Y. The negative bias becomes larger
as 7y gets smaller, a result of the increase in the nsr ratio, displayed in Figure
1(b). This is coherent with the fact that the only source of noise in this case
is the discretization error, so that increasing the latter, produces more biased
estimates. When ¢ = 0.001 or ¢ = 0.002, the largest negative bias of LW is that
obtained with RV (between -24% and -33%), while the bias of RV’ is between
-13% and -18%. In presence of microstructure noise, the best LW estimates of
d are obtained sampling at 1 and 5 minutes, and the bias is approximately
—10%, so that the average of the Monte Carlo estimates is approximately 0.36.
Interestingly, correcting for the presence of the measurement error improves the
quality of the estimates, in terms of bias and RMSE, for any choice of A, and
the relevance of the correction becomes evident as ( increases. It is noteworthy
that, despite the corrected LW estimator is asymptotically less efficient then the
LW estimator, the RMSE of d, is often smaller than that of d. This means that
the squared bias component of the RMSE prevails on the variance component,

thus confirming the relevance of correcting for the measurement error.

3.1.4 Nonstationary instantaneous volatility

The simulated trajectories for the nonstationary o2(¢) are obtained setting v =
0.2 and d = {—0.3,—0.4}. This implies that the fractional integration order,
0 = 1+d, of the instantaneous and IV is 0.7 and 0.6, respectively. We initialize
each simulated path with p(0) = In(100) and ¢%(0) = exp(¢)) > 0. Figure 2
reports a simulated trajectory of the I'V; under non-stationarity; it appears very
realistic and, in particular, the model is able to generate long periods of high
volatility which are typical of financial turmoils.

In the nonstationary setup, with § = 0.6, the nsr ranges between 10% when
A = 1 minute, to 300% when A = 30 minutes. With § = 0.7, the nsr ranges
between 3% when A = 1 minute, to 82% when A = 30 minutes. The reduction
in the nsr obtained when § = 0.7 is due to higher persistence of the signal. The
nsr corresponding to a A equal to 5 minutes, is 15%.

A similar evidence to that found in the stationary case emerges also when
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the o2(t) is long memory but nonstationary, which could be the relevant case in
practice, see Table 2. Firstly, the LW estimate, 5, based on IV, is very close to
the value 6 = 1 + d, which is the same as that of o?(¢). This is in accordance
with Proposition 1, for long memory orders in the range (0,1). When ¢ = 0 and
~v = 0.2, the variance of the noise dominates the signal as A increases, hence,
the impact of the discretization error on the LW estimates of ¢ is very large. For
example, when ( = 0 and § = 0.6, the bias of 6 based on RV is negative and

larger than 30%, and larger than 18% when § = 0.7.

Figure 2: Nonstationary integrated variance. The figure plots a simulated trajectory
of IV, = j;il 0?(s)ds which is generated according to model (24), with d = —0.3 and
v =10.2. 0%(0) = exp(—9.2).

As expected, the negative bias increases, as ( increases, and we observe
extremely large negative biases for ¢ = 0.002, so that 5, based on the RV, falls
in the stationary region, even though the I'V; is not stationary. For example,
RV?® has a negative bias equal to -28% when § = 0.6, meaning that 6 ~ 0.43
on average. On the contrary, the corrected LW estimator, SC, provides unbiased
estimates also in the nonstationary region, for both § = 0.6 and § = 0.7, and for

all choices of A and (.

3.1.5 Leverage

Finally, the last set of simulations, reported in Table 3, investigates the impact
on the estimates of d of the leverage effect, defined as the correlation between
the innovation in the volatility process and that in the price process. For the
stationary case the parameters are chosen as k =0.9, ¢ = -9.2,v=0.5,d =04

and p = —0.3, where p = corr(dW (t),dWy(t)), while for the nonstationary case,
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they arey = 0.2, d = —0.3 and p = —0.3. The value p = —0.3 is chosen according
to the findings in Andersen et al. (2002). Table 3 reports the simulation results
for the case in which the innovations of the volatility process are correlated
with the innovations of the price process (leverage effect). From Table 4(a)
it emerges that, for intermediate choices of A, the corrected LW estimator is
generally robust to the presence of correlation between the signal and the noise.
In particular, the correction works better for intermediate choices of A. This
indirectly confirms the finding in Meddahi (2002, p.493), that the correlation
between the I'V; and the measurement error increases non-linearly with A, when
p # 0. In the stationary case, the correlation is always positive and it ranges
between 40% at 1 minute frequency and 60% at 30 minutes frequency. On
the contrary, in the nonstationary case, the leverage effect produces a negative
correlation that decreases with the sampling frequency, being -0.36% at 1 minute
and -0.19% at 30 minutes. In this case, Table 4(a) shows that the leverage effect
has a little impact on SC, which is well centered on the true parameter value also
for large values of A, while the LW estimator performs as in the no-leverage
case.

Summarizing, the simulation results highlight the effectiveness, in terms of
bias reduction, of the corrected LW estimator of long memory of the IV}, even
when the volatility signal is nonstationary and in presence of leverage effect.
More importantly, the corrected estimator is robust to the choice of the sampling
frequency used for the computation of RV;*. A recent paper by Arteche (2012)
proposes a modification of the Hurvich et al. (2005) estimator to account for
the possible correlation between signal and noise, which may emerge under the
presence of leverage. A detailed theoretical and empirical investigation of the
consequences of the leverage on the estimation of long memory in I'V is left for

future research.
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4 Empirical Analysis

We estimate the long memory of I'V;, based on the RV series of 28 stocks traded
on NYSE. The sample period ranges from January 2, 2001 to December 31, 2007,
for a total of 1760 trading days.'' The RV series are computed with alternative
sample frequencies, say 1 minute, 5 minutes, 10 minutes, 15 minutes and 30
minutes.

Table 4 reports the estimates of the long memory parameter d. The corrected
estimates signal that volatilities are generated by a nonstationary long memory
process. Firstly, on average, the estimates obtained correcting for the measure-
ment error are higher than those obtained with the LW estimator, which lies in
the stationary region. Secondly, the corrected estimates are relatively constant
with respect to the choice of the sampling frequency used for the computation
of the RV. Instead, the non corrected ones are characterized by a downward
trend with respect to A. The dispersion of the corrected estimates, as measured
by a(c?) and d; — ds, is smaller than that observed for the LW estimates. This
evidence is clear from a visual inspection of Figure 3, which reports the long
memory signature plot for four stocks in the sample. The LW estimates based
on the RV series (dashed line) fall in most cases in the stationary region, while
it is evident the downward trend with respect to A. On the other hand, the
corrected estimates of d (solid line) are always above the Whittle estimates and
are constant across different choices of A, in line with the simulation results.
We think that it is important to stress the fact that the corrected LW estimator
always lies in the nonstationary region, suggesting that the volatility process
could be a nonstationary process. From this point of view, the fact that the LW
estimates of d, based on RV}, turn out to be less than 0.5, namely a stationary
long memory process, is mainly due to the role of the measurement error.

This means that using a biased long memory estimator leads to wrong conclu-
sions on the stationarity of the integrated and instantaneous volatility processes.

Using a similar argument, but in a discrete-time domain framework, Hansen and

1'We avoid the possible upward bias in the semiparametric estimates of d, due to the presence of
large shifts as generated by changing bull and bear markets, during the 2008-2009 financial crisis.
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Figure 3: Long memory signature plots: Long memory parameter estimates for dif-
ferent sampling frequencies (1, 5, 10, 15 and 30 minutes). Dashed lines represent the
LW estimator of the memory parameter (obtained minimizing the function in (20)
concentrated with respect to G with 5 = 0). Solid lines represent the corrected LW
estimator (see (21)).)
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Lunde (2010) have proposed an instrumental variable estimator of the persis-
tence of the signal when the latter is a unit root process. To the best of our
knowledge, the consequences of a fractional, but nonstationary, volatility process
are not studied yet in the literature and the evidence reported here deserves a

more detailed analysis.

5 Conclusions

A stylized fact is that RV has long memory. In this paper, we investigate the
dynamic properties and the source of the long-range dependence of RV. First,
we find that, when the instantaneous volatility is driven by a fractional Brownian
motion, the I'V; is characterized by the same degree of long-range dependence,
d. As a consequence, the RV inherits this property, since the spectral density
of RV is equal to the spectral density of IV, plus a term which depends on the
variance of the measurement error.

The additional term in the spectral density of RV impacts on the finite sam-
ple properties of the semiparametric estimates of d, since they crucially depend
on the use of RV in place of the unobservable I'V. In absence of microstruc-
ture noise, the RV spectral density converges to the spectral density of IV, as
A — 0. When the presence of microstructure noise prevents us from using all
the available price observations, the additional component in the spectral den-
sity, which depends on the discretization error and on the microstructure noise,
significantly affects the finite sample bias of semiparametric estimates of d.

We adopt a correction of the LW estimator along the lines of Hurvich et al.
(2005). A Monte Carlo experiment confirms that the correction of the local
Whittle estimator is robust to the measurement error for all choices of A. Thus
the trade-off between discretization error and microstructure noise is neutralized
by adopting a corrected version of the LW estimator. Finally, the estimation of
the long memory of 28 NYSE stocks emphasizes the practical importance of
considering the measurement error when estimating the degree of long memory

of IV.
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The corrected estimates of d suggest that the IV and the instantaneous
volatility can be nonstationary processes. In this study we have not considered
the role of jumps in prices and their potential effect on the estimation of long

memory in I'V. This is left for future research.
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A  Proofs

A.1 Proof of Proposition 1

Given that IV, = ftt_l 52(s)ds. Following Chambers (1996) we express the inte-

gral operator in the definition of IV as a simple filter that has transfer function
LN 1 i\
T(\) :/ e "Mdu = ——[e " —1].
0 (=)
Therefore the spectral density (or pseudo spectral density) of IV is given by

frv) = TP fo2 (V). (28)

The limit of fry/(A) for A — 0 is

lim frv(A) = /{%HT()‘)Ffa?()‘)] (29)

Since |T(\)]? = 21=cos ) apnq (1—cos (\)) = |A|?/2as A — 0, then limy ¢ |[T()\)|?

A2

1. Thus,

: 2d 1 2d _
lim X2 fry () = lim X f,2(3) = c, (30)

that is IV has the same degree of long memory of (), which is equivalent to

a2(t).

A.2 Proof of Proposition 2

Assume that the processes for p(t) and RV;* are those in (1) and (6). Assume
also that ¢?(t) is such that condition (2) is verified, and that m(t) = p and no

leverage effect, then

AL
Up i =

Ut2,z‘,A (thz —1) + A% + 200y i A2t (31)

It is easy to show that

(i) E(uf) = Ap%;
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(ii) Var(uf) =2A"'E [(Uzi,A)Q] +4Ap’E [JtQ,z',A}

(iii) u2 is dynamically uncorrelated, i.e., Cov(utA,uﬁh) = 0, for any integer

h # 0;

(iv) The error term uf* is uncorrelated with IV;;

(v) Cov(RV,2,RV;A,) = Cov(IVy, IV;_p,), for any integer h # 0.

Thus, for A > 0 and 0 < d < 1/2 the spectral density of RV,® is given by

frva(A) = % Var(IV;) + Var(uf) + 2 Z [Cov(IVy, IV;_j) cos(Aj)]
j=1

= fiv(A) + fua(N) (32)

When A > 0 and 1/2 < d < 1, the pseudo spectral density of RVtA is given by

the expectation of its sample periodogram, i.e.

frva(A) = E(Igya(N) = E(Iry 1o (N))
= E(Iiv(N) + E(L,a ()

= frv(A) + fua(A) (33)

where I.()\) is the sample periodogram.

Therefore, for 0 < d < 1, limy_,0 A2? frya (N) = limy 0 A2 (fry(A)+fa (V) =

. _ Var(up)
c with ¢ > 0, where f,a()\) = —1>.

Given that Var(uf) converges to zero as A — 0, so that f,a(\) — 0. This

implies that

lim frya @) = fiv(A) (34

the proof then follows from Proposition 1, and multiplying both sides by A\2?,

letting A — 0.

A.3 Proof of Proposition 3

Consider the processes p(t), RV,®, &/ defined respectively in (14), (6) and (16).

Let m(t) = p and assume no leverage effect. Assume also that o2(t) is such that
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condition (2) is verified. First, in order to characterize the spectral density of

RV;A, we need to obtain the moments of the measurement error, £ = Y7 | €A,

(a) 53- is defined as

fz‘ £ o7in (25 = D) AP 407 s A2 (000, a2,005,0) F2A 00 i A+2A 105 A 21,
(35)
hence
E(&3) = Elofia (i —1)]+E(A%) + E (5:4)

+2E (01,3,a2,iM,4,A) + 2A1E (Ne5,A) + 2A0E (013, %)
= AP+ E (77152,i,A)

— AZ2 +0_%’

where 0?7 = Var[my; Al = 2Var[e,; a]. Because o4, A, 23, and n:; A are
mutually independent, E (o¢; azt,intin) = E(orin) E(z:) E(nin) =0.
It follows that E <Z?:1 5&) = A_lag + Ap?;

(b) The covariance between £2 and §tAj can be written as

Cov (ff,,éfd) = F [ulfzufﬂ] + F [“fmf?,j,A} +2F [ufl (O't,j,AZt,jUt,j,A)]
+2AuE [ufmt,j,A] + AA1 [(01,5,A%,iM8,5,0) 1)
+E [Uﬁi,Aufj] +E [nz%,i,AntZ,j,A] +2E [nﬁi,A (Ut,j,Azt,jnt,j,A)]
+2F [(Ut,z‘,AZt,mt,i,A) Uﬁj] +2F [(Ut,z‘,Azt,im,z‘,A) Wﬁj}
+4E [(013,020:M85,0) (01,5,A%,578.5,0)]
+2Ap [nt,z‘,AntQ,j,A] + 200 (17 A A + 2080 e a (00 a%05m5,0)]
+F2ARE [y aupy] + AN WP E (s anya] — o — 20° 0oy — At

= 0'3 + 2A2,u20727 + Atpt — o*f; — QAQ,LLZU% — At =0 Vi#j
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The covariance of §tA and {tﬁh is equal to

n

n n n
Cov foi, thﬁhd = Z Cov ({tﬁ-,fﬁrh?j) =2n%2.0=0 for any integer h # 0.
i=1 j=1 i=1 j=1
(36)

(c) The variance of £2 is,

Var (gtﬁ) = Var(ufl-) + Var(nzl-) + 4 Var (o5 A2iMin) + 4A2,u2 Var(n: ;)

= 2B [(07,,0)"] + 40P E [07; A] + E(nis,0) — 0y +40,E [07; A] + 40707,

it follows that the variance of £ is

Var(€3) — Var (Zsa) =3 Var (62)
i=1 =1
= 2A7T'E [(0},0)%] + 4002E [(0F,0)7] + ATHE (i 2) — o)

HAAT'OLE [0, A] + 40170 (37)

i. For A > 0and 0 < d < 1/2, the spectral density of RV, is therefore given

by:

Frva (V) = o { Var(IV) + Var(6) +2 3 [Cov(IVi, IV ) cos(Aj)]
j=1

= f1v(A) + fea ().

When A > 0 and 1/2 < d < 1, the pseudo spectral density of RVtA is given

by the expectation of the sample periodogram of RV, i.e.

frva(A) = E(Igya(X) = E(IIV+§A()‘))
= B(Iv (V) + E(Iea (V)

= friv(N) + fea (V) (38)

The proof then follows from Proposition 1, and multiplying both sides by

A2 Jetting A — 0.

ii. It is evident that when A — 0, Var (ftA) — 00, 8o that frya(A) = oo VA
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